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The Natural Scenes Dataset:

Masssive, high-gquality
whole-brain 7T fMRI measurements
during visual perception and memory
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Why NSD?
[ ]

* How does visual cortex work?

» Characterize the computations by which
information is transformed and re-represented in
the brain.

* Build models of neural information processing. -
(Kay, Neurolmage, 2018)

* We need to sample a lot of stimuli.

* Goal 1: To establish a massive benchmark dataset
that can be used to answer a variety of scientific
questions about vision

* Goal 2: To answer some scientific questions
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What were the priorities for this dataset?

* Priority 1: Big.
» Large data per subject
» Large number of subjects

* Priority 2: High SNR, high resolution.
o 7TfMRI
+ Screen for the best subjects

* Priority 3: Push envelope on

acquisition and analysis methods. E

* Priority 4: Paranoid on details and g
documentation.

Kendrick Kay, CMRR, University of Minnesota
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Core contributors

» Kendrick Kay, Assistant Professor, UMN

* Thomas Naselaris, Assistant Professor,
Medical University of South Carolina

» Emily Allen, Postdoctoral Associate, UMN
* Yihan Wu, Graduate Student , UMN
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Overview

* 8 participants, 34-44 sessions
(including anatomy)

» Exposure to 22,500-30,000 trials of T
natural scenes over the course of a
year

» Whole brain dataq, including
cerebellum, subcortical regions

« 7T, 1.65 TR, 1.8mm isotropic fMRI data
» Long-term continuous recognition task

Stimuli

+8.4x8.4°

* Presented via a linearized
high-quality LCD display, Cambridge
Research Systems’ BOLDscreen 32

» Each stimulus was on for 3 seconds,

followed by a blank screen for 1
SeC O n d Designed

for
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©
task: for every image you see, indicate if it is *new™* (1) “o p

('ve never seen it before) OI * * (2) (I've seen before, either foday or in a past session)

What is COCO?

Common Objects in Context [l n = K h} “ i A\

http://cocodataset.org

COCO is a large-scale object detection,
segmentation, and captioning dataset.
COCO has several features:

Object segmentation
Recognition in context
Superpixel stuff segmentation
330K images (>200K labeled)
1.5 million object instances

80 object categories

91 stuff categories

5 captions perimage

250,000 people with keypoints

otated images in the MS COCO dataset.
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Data collected

» functional data
» Whole brain EPI data during task (1.8 mm, 1.6s TR, MBx3, iPAT2)
* Resting state data
» Retinotopy (pRF), category localizer
 Synthetic stimuli data
* Imagery data
- field maps (distortion correction)

» anatomical data
« 6T1s, 3125, 4 dMRI (diffusion data), MR TOF angiogram (3T)
« SWIvenogram (7T)

(for some sessions: pulse, respiration)

« Day/time/duration of scan, subject feedback, general notes, equipment
used, sequences used, hardware issues, screen shot of slice placement...
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~ Subject leaderboard
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BOLD (higher is better)

BOLD (higher is better)
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Response rate (higher is better)
T I :&'_,_’,& ; t"‘_t#_ o

Percent
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Task performance (higher is better)

SPECIAL (higher is better)
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Motion across session (lower is better)

Motion overall (lower is better)
%

Displacement (mm)
w
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Motion within run (lower is better)

Motion jitter (lower is better)

0.4

Displacement {(mm)
o
o

0.15
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CASE 1 FORGE

Precision, Stability, Comfort
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Very good data quallty qnd stability
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T1 > 12 > EPI
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T1

MR angiogram
(MRA)
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Robust and stable BOLD responses

A S
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Very good data quality and stability
(more evidence)
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Brain regions driven by NSD

Kendrick Kay, CMRR, University of Minnesota
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Subjects show above-chance memory performance, even at extiremely long delays
(6+ months).
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What you need to pull off such a project?

* A LOT of server space.
* A lof of $$$ (scanner costs, subjects hourly payment + bonuses)

* Amazing participants (bothin their Performonce as subjects and also
their willinghess to be scanned every week for ~a year).

» 2 researchers available (one 7T operator) for every scan.
* A huge stimulus set (73k images)

» Carefully crafted, solid experimental design

» High-quality, streamlined data acquisition protocol

» Ongoing (daily) quality control checks of all data as it
comes in.

* A stable (largely automated) pre-processing/processing
pipeline.

» People who are interested in analyzing it!!
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Shout out to our great participants!
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« Studying representation of visual
dimensions (orientation, spatial
frequency, contrast, color, objects,
scenes, etfc.)

* Benchmark encoding models
 Training neural networks

tht COUId « Characterizing individual differences
NSD dqi‘q be » Topography and mapping

 Integration with other neurcimaging
UserI for? : modalities

» Studying short-term and long-term
memory

* Investigating subcortical regions
(LGN, cerebellum)

» Developing fMRI analysis methods

Army of collaborators on the NSD data

Kendrick Kay, CMRR, University of Minnesota
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Army of collaborators on the NSD data

Billy Broderick, Jon Winawer (NYU)

£ AL

What are spatial frequency tuning
properties during natural vision?

Kendrick Kay, CMRR, University of Minnesota
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Army of collaborators on the NSD data

Chris Racey, Jenny Bosten, Anna Franklin (Univ. of Sussex)

Encoding models for color
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Kendrick Kay, CMRR, University of Minnesota
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Army of collaborators on the NSD data

lan Charest (Univ. of Birmingham)

(S

Characterize the semantic spaces
in individual subjects (using RSA)

Kendrick Kay, CMRR, University of Minnesota
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Army of collaborators on the NSD data

Radek Cichy, Gemma Roig, Aude Oliva (MIT)

The Algonauts Project

N | Explaining the Human Visual Brain =
< S 5

Kendrick Kay, CMRR, University of Minnesota
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Army of collaborators on the NSD data

Ghislain St.-Yves, Thomas Naselaris (Medical Univ. of South Carolina)
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Deepnet-fwRF structure

Use huge amounts of data R vy

to directly frain a deep neural ~—)

network to predict brain activity ? ,
ENV (222 w
s st vetse
K L sent to the fwRF

gooopoooooooOoO0
mpXsY: max pooling, kernel size X, stride Y
Irn: local response normalization.
bn: batch normalization.

Kendrick Kay, CMRR, University of Minnesota
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Army of collaborators on the NSD data

Maggie Mell, Thomas Naselaris (Medical Univ. of South Carolina)

How does the brain extract ¢
numerosity from natural scenes? o,

Typical numerosity . s
experiment stimulus’ 2 2 2 latural Scene

Kendrick Kay, CMRR, University of Minnesota
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Army of collaborators on the NSD data

Danny Guest (UMN), Mike Arcaro (UPenn)

Exploit high-quality fMRI measurements
in the thalamus (LGN, pulvinar, SC)

Kendrick Kay, CMRR, University of Minnesota
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Army of collaborators on the NSD data

Ben Hutchinson, Brice Kuhl, Sarah DuBrow (Univ. of Oregon)

Neural mechanisms underlying
short- and long-term memory

Kendrick Kay, CMRR, University of Minnesota
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Army of collaborators on the NSD data

Alex White, Jason Yeatman (Stanford)

How does VWFA encode written words?

Kendrick Kay, CMRR, University of Minnesota
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Army of collaborators on the NSD data

Tom Gebhart (UMN)
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Kendrick Kay, CMRR, University of Minnesota
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Army of collaborators on the NSD data

Asha Ramalaxmi (UMN)
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Kendrick Kay, CMRR, University of Minnesota
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NSD data description file

» nsddata description.docx

« Contains a wealth of technical details about what is provided in
the prepared data files.

« Still being written (work in progress).
» Should read this offline!

AutoSave

nsddata descriptior

Home Insert Draw Design Layout References Mailings Review View  Zotero 14 Share | 0 Comments
2 1

2 4 7

Current data status

- Manual ROI definition remains to be done.
- A Python version of “nsd_mapdata.m” needs to be written.

Data updates

- March 2, 2019: Initial preparation of files (version 1.0).

- June 9, 2019: Major update (version 1.1). Too many changes to list, but note that all
previous data files are still valid (nothing fundamental has changed; only new things
have been added) .

- June 16, 2019: Bug fix. The funclpt8mn/[T1,T2]_to_funclpt8mm.nii.gz were completely
wrong. Tt is fixed now.

- July 5, 2019: Major release (version 1.2). FreeSurfer edited surfaces now available.
Original FS directories moved to nsddata_other. Removed all of the DENSE* FreeSurfer
files. Behavioral data file format changed (now has a 16th column). Release of more nsd
data, making us current through July 3, 2019. Release of prf and floc analysis results.

Release of motion parameter files resting-state and physio data nc i

September 3, 2019: Major release (version 1.3). “restingbetas” are now available.

Behavioral data and analysis has been revamped and overhauled (previous behavioral files

are obsolete); in doing so, we have added some new columns to the behavioral .tsv files.

We now provide betas not only in subject-native volume spaces (1.0mm and 1.8mm) but also

in atlas spaces, specifically, fsaverage and MNI. Also, data are now available from a NAS

o (fai )

e.
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NSD data description highlights:

* Pre-processed functional and structural data
* Freesurfer outputs

* Native subject and group spaces

* Behavioral data

» Resting-state data

» Physiological data and eyetracking data

» Timing details

* RO files

» General experiment information

* Analysis code
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Preprocessing of the fMRI data

» One temporal resampling using cubic interpolation

* Upsampling of the data )
(high-res version: 1s; low-res version: 1.333 s)

« Slice tfime correction included in this
* First fime point coincident with start of the first volume

» One spatial resampling using cubic interpolation

* Upsampling of the data _
(high res version: 1 mm, low-res version: 1.8 mm)

* Motion correction
» Distortion correction
» Across-session alignment

44
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Preprocessing of the fMRI data

GLM analysis:

+ Single-trial beta estimates

» HRF estimation for each voxel

» Data-driven denoising (GLMdenoise)

 Ridge regression to stabilize single-trial estimates

Derive global HRF manifold; select from 20 HRFs

Kendrick Kay, CMRR, University of Minnesota
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Take-home points

* NSD is a large 7T fMRI dataset with
perception and memory of natural
scenes

» Data are demonstrated to have hi?h
SNR, high resolution, and high stability

* NSD data can support a variety of uses

« NSD data will be freely available:
hitp://naturalscenesdataset.org

» Collaborations welcome

Kendrick Kay, CMRR, University of Minnesota
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