
1/14/20

1

BIG DATA ISSUES

1

Big data comes 
at a price. 

There are 
challenges…

2



1/14/20

2

Data format issues
• Some MATLAB data types: double (8 bytes), single (4 

bytes), int16 (2 bytes), logical (1 byte)
• (Most) computation needs to be done in double or single, 

but to save memory and/or disk space, we can consider 
storing data in smaller formats
• Be aware of variables that are potentially huge; when 

saving to disk, consider casting to a small format

3

Data format issues
• Basic dilemma for file formats:

Compression reduces file size (e.g. this is the default when 
using save –v7.3 for .mat files) but this costs computational 
time when saving and loading.
• E.g., there is overhead when loading .nii.gz
• Note that some data are highly compressible (e.g. ROIs)

• Nowadays, disk space is generally “cheaper” than 
computational time, so consider saving large data in 
uncompressed format?

4



1/14/20

3

RAM/memory
• Typical computers have 8–16 GB. This is not a lot.
• Need enough RAM to hold data and to compute on it
• If data grow too big to fit into RAM, need to chunk the analysis 

(load some data, compute, save results, clear, and repeat)
• In MATLAB, can use ‘whos’ to monitor usage (also see 

checkmemoryworkspace.m)
• Can use ‘top’ (or Activity Monitor) to monitor RAM on the 

entire computer.
• Hitting swap (i.e. requiring the OS to offload memory to disk) is 

likely a death knell. ☠
• If money is no object, buy lots of RAM

5

Disk space
• Disk space is cheap. Buy lots.
• Type of disk (SSD vs. HDD) [Tradeoff speed vs. cost]
• If certain files are accessed very often, consider storing them 

on a fast device
• Disk access is time-consuming. Avoid writing and reading 

unneccessarily.
• It is generally faster to consolidate data into a small number of 

files compared to having to access a large number of files.
• Try to load only the data you need

• For example: load(‘test.mat’,’var1’)
• For example: HDF5 format and random access

6



1/14/20

4

Execution time
• Many MATLAB operations are automatically multithreaded
• To speed things up, consider:

• Opening multiple MATLAB sessions
• Using parallel computing (parfor)
• Farming the code to a cluster
• Implementing code on GPUs
• Writing more efficient code

• MATLAB profiler is extremely useful to isolate slow code
• Vectorization is good; for-loops are bad
• In general, DO NOT optimize until it becomes a problem:

human time is more expensive than computer time.

7

Network issues
• If the data live on a server, network speed to the 

computer performing the analysis is a potential bottleneck 
when loading or saving
• Consider performing expensive computations on the 

machine that has direct access to the data

8



1/14/20

5

Miscellaneous ideas
• Carefully test code on small data (e.g. one subject, one 

session) before deploying at scale
• Separate loading from analysis (this way, you can load 

once and then use trial-and-error to develop the analysis)
• Cache computationally expensive results
• The larger the data, the more costly coding errors are. 

(The roundtrip between developing and seeing results 
takes more and more time.) Thus, it is important to 
develop coding proficiency. "

9


