
1/14/20

1

CODING ISSUES

1

How to manage code
• Important to organize and name your files carefully
• Develop a methodical workflow

• For each figure you make, do you know the trace of all the code used to generate it?

• Consider creating a formal repository (e.g. github)
• How to organize code for different versions of an analysis?

• One file (e.g. using an if- or switch-statement)?
(This can save lines of code but may grow unwieldy)

• Two parallel independent files?
(This can streamline each file but may grow hard to manage)

2

1/14/20

2

What is good code?
• How many comments to put in?

(Depends on the intended consumer)
• How flexible should the code be?

(Depends on the intended reuse)
• How efficient should you make the code?

(Try to develop good coding habits and efficiency will come for free)
• How reusable should the code be?

(Will you be analyzing similar data in the future?)
• How modular should the code be?

(General-purpose operations should be made into functions)
• How concise should the code be?

(Hard to say; depends on the expertise of the intended consumer)
• How readable should the code be?

(Probably very)

3

Good programming practice
• Generally avoid hard-coding numbers and strings (e.g. filenames)

(But again, depends on the intended purpose of the script)
• Segregate into stages (load data vs. analysis vs. visualization)

• This reduces lines of code to check
• E.g., finalize and check the analysis BEFORE worrying about the prettiest way

to visualize the results

• Initialize and pre-allocate variables
betas = zeros(nvox,ntrial);
• Use good function and variable names
• Practice safe programming (more on this later)

4

1/14/20

3

Hard design choices
• Choice 1: Function vs. scripts

• Functions implies reusability and
permanence. Thus, exact
correctness, very careful
documentation, and (possibly)
efficiency are important.
• Scripts can range from one-offs to

production code. For exploration
or development, it may be okay
to write uncommented messy
ugly code. Ugly code can always
be polished later...

The importance of functions
• A function is a promise to your future self.
• Good function documentation is a skill.

One must determine the proper amount
of detail.
• No one wants to see computer code in a

scientific paper.
• On the other hand, can you clearly and

concisely state exactly what you did to
your data?

• Test your functions. Bugs are painful. 🕷

5

Hard design choices
• Choice 2: Quick-and-dirty vs. production
• In the case of quick-and-dirty exploratory analyses (especially

when typing directly into the command line), it may be useful to
save figures (e.g. take a quick screenshot)

6

1/14/20

4

Hard design choices
• Choice 3: Automated vs. manual
• Strong appeal to construct a self-contained and runnable script

that does everything: load, compute, save, make figures
• This way, you can quickly tweak the code and re-run with zero effort. 🏄

• However, sometimes manual intervention is necessary (e.g. GUIs)
or desired (e.g. checking results before proceeding)

7

Safe programming
• When coding, anything and everything can go wrong.
• To help prevent errors:

• Structure code deliberately and cleanly
• Perform checks (asserts and queries)

vs

8

1/14/20

5

Safe programming
• Asserts

• By using assert statements, after code runs successfully without crashing, you
KNOW that it is correct (up to the extensiveness of your checks).

• You can assert all sorts of things:
• that the number of files matched is correct
• that a variable is in fact empty
• that a matrix has specific dimensions
• that the values in a matrix are all finite values (i.e. not NaN nor Inf nor -Inf)
• that a variable is of the cell format
• that the number of elements along a certain dimension matches some specific value

vs

assert(isequal(size(data),[10 200]));
assert(length(files)==10);
assert(all(isfinite(data(:))));
assert(size(data,1)==numvoxels);

9

Safe programming
• Queries

• Inspect contents of a variable (while code runs)
• Inspect dimensionality of a matrix (while code runs)
• Create a figure and save to disk (e.g. inspect data from every run/subject)
• Write text to a log file (e.g. which files were processed)

data(1)
size(data)
fprintf('%s',filename)

vs

10

1/14/20

6

How do you know if code is correct?

• Strategies to help promote code correctness:
• Use safe programming
• Carefully eyeball your code (helpful only if you are proficient)
• Break code into small problems so you can vet one piece of code at a time
• Step through your code line by line (e.g. dbstep)
• Test your code on example datasets with known outputs
• Have someone look at your code (e.g. code review)
• Have someone re-implement the analysis from scratch??

11

