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Abstract Gamma oscillations in visual cortex have been hypothesized to be critical for

perception, cognition, and information transfer. However, observations of these oscillations in

visual cortex vary widely; some studies report little to no stimulus-induced narrowband gamma

oscillations, others report oscillations for only some stimuli, and yet others report large oscillations

for most stimuli. To better understand this signal, we developed a model that predicts gamma

responses for arbitrary images and validated this model on electrocorticography (ECoG) data from

human visual cortex. The model computes variance across the outputs of spatially pooled

orientation channels, and accurately predicts gamma amplitude across 86 images. Gamma

responses were large for a small subset of stimuli, differing dramatically from fMRI and ECoG

broadband (non-oscillatory) responses. We propose that gamma oscillations in visual cortex serve

as a biomarker of gain control rather than being a fundamental mechanism for communicating

visual information.

DOI: https://doi.org/10.7554/eLife.47035.001

Introduction
An important goal in visual neuroscience is to develop models that can predict neuronal responses

to a wide range of stimuli. Such models are a test of our understanding of how the system functions,

and have led to insights about canonical computations performed by the early visual system, such as

filtering, rectification, and normalization (Carandini et al., 2005). Image-computable models, which

predict responses to arbitrary, unlabeled images, have been developed for the functional MRI (fMRI)

blood oxygen level dependent (BOLD) signal (Dumoulin and Wandell, 2008; Güçlü and van

Gerven, 2015; Kay et al., 2013b; Kay et al., 2013a) and for spiking of single neurons in animals

(Mante et al., 2008; Rust et al., 2005; Simoncelli and Heeger, 1998). In contrast, to our knowl-

edge, there are no image-computable models to predict oscillations in the gamma band (30–80 Hz)

of the local field potential (but see Discussion), although gamma oscillations have been intensely

studied and are a prominent part of many neural recordings and theories of neural function

(Jensen et al., 2007; Tallon-Baudry and Bertrand, 1999).

Studies in humans and animal models indicate that gamma oscillations are systematically related

to image properties, supporting the possibility that this stimulus dependence might be captured in

an image-computable model. In particular, oriented bars (Gray and Singer, 1989; Gray et al.,

1989) and gratings (Eckhorn et al., 1988; Hermes et al., 2017a; Muthukumaraswamy and Singh,

2008) elicit large gamma responses in visual cortex. The responses tend to increase with stimulus

size and contrast (Gieselmann and Thiele, 2008; Henrie and Shapley, 2005; Ray and Maunsell,
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2011), and tend to decrease in the presence of unstructured noise (Bartoli et al., 2019;

Hermes et al., 2015; Jia et al., 2013; Kayser et al., 2003) or multiple orientations (Bartolo et al.,

2011; Lima et al., 2010). Some images of scenes and objects cause large reliable gamma oscilla-

tions while others do not (Brunet et al., 2015; Hermes et al., 2015). Gamma response selectivity

differs from that of the BOLD response (Hermes et al., 2017b; Muthukumaraswamy and Singh,

2009) and single- and multi-unit spike rates (Jia et al., 2013; Peter et al., 2019; Ray and Maunsell,

2011). For example, when recording from the same electrode in primary visual cortex (V1), increas-

ing grating size causes gamma oscillations to increase in power while causing firing rates to decrease

(Jia et al., 2013; Ray and Maunsell, 2011). Gamma power also decreases dramatically with noise

masking while population firing rates do not change substantially (Jia et al., 2013). Because image

selectivity in gamma oscillations clearly differs from the selectivity in firing rates and BOLD signals, a

model to predict the extent to which different images will give rise to gamma oscillations requires a

different form than a model to predict the BOLD signal or firing rates.

Here, we measured responses from electrocorticography (ECoG) electrodes over visual cortex

while human subjects viewed a variety of different images. We separated the ECoG response into

two spectrally overlapping components: one broadband (spanning 30–200 Hz) and one narrowband

(centered between 30–80 Hz). We compared the broadband component and narrowband gamma

component to the images, and developed image-computable models to account for the stimulus

selectivity present in each. The broadband response was well fit by a model adapted from fMRI of

visual cortex (Kay et al., 2013b). The narrowband gamma responses were strikingly different, and

we developed a new, image-computable model in order to explain those responses. The differences

in the patterns of responses and the differences in the two models suggest that broadband signals

and narrowband gamma originate from distinct aspects of neural circuitry.

Results
In order to develop an image-computable model that can predict gamma responses to a large vari-

ety of images, we measured ECoG signals in three human subjects. We identified ECoG electrodes

that were located on the surface of V1, V2 and V3 and had a well-defined population receptive field

(pRF) measured from an independent experiment with sweeping bar stimuli (as in Winawer and Par-

vizi, 2016; Winawer et al., 2013). This yielded six electrodes in the first subject, two in the second

subject and seven in the third subject (Figure 1A). For each electrode we calculated the power spec-

tra from the 500 ms window following presentation of each of the 86 images. As in previous work

(Hermes et al., 2015), we separated the power spectra into an oscillatory and non-oscillatory com-

ponent by modeling the log-power/log-frequency spectrum as the sum of 3 components: a linear

baseline, a constant, and a Gaussian centered between 30 and 80 Hz (Figure 1B). These three terms

correspond to the baseline signal in the absence of a stimulus, a stimulus-specific broadband

response, and a stimulus-specific narrowband gamma response, respectively. In our quantification,

the narrowband gamma and the broadband signal overlap in frequency content, and are distin-

guished by the pattern in the spectral data. Despite the overlap, the two components do not

depend on one another: it is possible to obtain a positive broadband component with zero narrow-

band gamma, zero broadband component with positive narrowband gamma, or a mixture of the

two types of components. Note that our quantification of narrowband gamma response was con-

strained to be a nonnegative Gaussian, and so in the presence of noise, even images which cause

the oscillatory gamma response to decrease or to remain unchanged (compared to the blank screen)

are likely to be estimated as slightly positive.

Replicating previous results (Hermes et al., 2015; Jia et al., 2013; Zhou et al., 2008), we

observe large increases in narrowband gamma power for large, high-contrast grating patterns but

not for noise patterns, and strong broadband responses for both grating patterns and noise stimuli

(Figure 1B–C). Because the broadband response is similar for the two types of stimuli, the greatly

reduced narrowband gamma for the noise stimuli does not indicate a general lack of visual respon-

sivity, but rather that a different type of stimulus selectivity exists for the gamma response compared

to the broadband response.
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Stimulus selectivity differs for ECoG gamma oscillations compared to
broadband ECoG and BOLD
We find that stimulus selectivity is similar for broadband ECoG and BOLD but quite different for

gamma oscillations. We first illustrate this with example responses from the three signal types.

BOLD responses to a subset of these images were measured in previous work (Kay et al., 2013b)

(images 1 to 77, Figure 2A). Using the publicly available data from that study (http://kendrickkay.

net/socmodel/), we identified a voxel in V1 with the most similar pRF location to one of our electro-

de’s pRF (electrode 3 in subject 1), and plotted the BOLD responses from this voxel to the different

Figure 1. Example broadband and gamma responses to grating and noise stimuli. (A) Location of the electrodes implanted in each subject (black and

white dots) rendered on estimates of early visual areas (Benson and Winawer, 2018; Benson et al., 2012). (B) The power spectra for example

electrodes (white dots from panel A). Power spectra are shown on a double logarithmic plot for a grating stimulus (red, stimulus number 45), a noise

pattern (blue, stimulus number 83) and the baseline condition (black). The solid lines indicate the data (68% confidence interval from bootstrapping).

The dotted lines indicate the fits to the data: stimulus-induced responses are modeled as a baseline linear fit (black) plus a constant and Gaussian to

capture broadband and narrowband stimulus-specific responses, respectively. (C) Time-frequency plots (spectrograms) for the same electrodes. The

black line indicates stimulus timing (500 ms). All spectrograms are normalized with respect to the same baseline: the inter-stimulus interval between all

trials (from 250 to 500 ms after stimulus offset). Spectrograms are cut off at a maximum power of ±1.5 log10 units. The multitaper approach results in a

temporal smoothing of 200 ms and a frequency smoothing of ±15 Hz. Spectrograms represent averages across all trials of a given stimulus type. Code

to reproduce this figure can be found on GitHub (Hermes, 2019).

DOI: https://doi.org/10.7554/eLife.47035.002

The following figure supplement is available for figure 1:

Figure supplement 1. Phase locking plots.

DOI: https://doi.org/10.7554/eLife.47035.003
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Figure 2. Stimulus selectivity for BOLD, broadband, and gamma. Responses in human V1 to different images expressed as percent signal change

above baseline. (A) The images were identical to those used in a prior fMRI study, with a few additions, and are grouped into several stimulus

categories: SPACE (1 to 38), ORIENTATION (39 to 46), CONTRAST (47 to 68), SPARSITY (69 to 78), COHERENCE (79 to 86). Larger versions of the

stimuli are shown in Figure 2—figure supplement 1–5. (B) The fMRI BOLD response in one V1 voxel whose pRF location is matched to the electrode

shown in C and D (replotted from Kay et al., 2013b). (C) The ECoG broadband response for all 86 images from a single electrode (Figure 1A, left). (D)

The ECoG narrowband gamma response for all 86 images, recorded in the same electrode. (E) Broadband (top) and narrowband (bottom) gamma

responses to 86 stimuli averaged across the 15 electrodes in V1-V3. Insets (right) show a zoomed-in view of how the responses vary with four contrast

levels and different numbers of component gratings: 1, ‘grating’, 2 ‘plaid’, or 16 ‘circular’. Within each type of pattern, the four bars are responses to

stimuli with increasing stimulus contrast. In panels C-D, blue dots indicate significant responses (p<0.05 by bootstrap). In panels B-D, error bars

represent the 68% range by bootstrapping across trials. In panel E, error bars represent the 68% range by bootstrapping across electrodes. Code

to reproduce this figure can be found on GitHub (Hermes, 2019).

Figure 2 continued on next page

Hermes et al. eLife 2019;8:e47035. DOI: https://doi.org/10.7554/eLife.47035 4 of 28

Research article Neuroscience

https://doi.org/10.7554/eLife.47035


stimuli (Figure 2B). The BOLD responses in this voxel across stimuli are representative of the BOLD

data reported in our previous study (cf. Figure 7 in Kay et al., 2013b). The pattern of responses in

the BOLD data is generally similar to that of the broadband ECoG data (Figure 2C). In contrast, the

ECoG narrowband gamma responses (Figure 2D) are quite different. The most salient pattern across

the 3 types of responses to the whole image set is substantial BOLD and broadband responses for

most images whereas gamma responses are large only for gratings (Dorientation). The BOLD signal

and ECoG broadband power are largest for patterns with multiple orientations, such as the curvy

patterns in images 74-78 (and similar patterns from the Dspace stimuli that overlapped the pRFs,

including images 8-16 and 30-36). These responses often exceeded the response to high contrast

gratings (images 39-46). The opposite is true for the gamma responses, for which the biggest

response by far is to high-contrast gratings, and for which no significant responses were found for

space stimuli (relative to the response to blank stimuli, based on bootstrapping across trials; see

Materials and methods). For all three signal types, if there is a response to a stimulus of a particular

pattern, such as gratings (images 47-50) or plaids (images 51-54), then responses increased with

stimulus contrast for that pattern. Note that the scale of the different measures varies considerably

(e.g.,~5% signal change for BOLD, 200% for broadband, 2,000% for gamma) and are not compara-

ble. We return to this issue in the section ‘Gamma responses are well predicted by a model that is

sensitive to variation in orientation content’.

These patterns are clearly evident not just in the example electrode (Figure 2C–D), but also in

the responses averaged across the 15 electrodes in V1-V3 of 3 subjects (Figure 2E). In particular the

broadband responses to curved patterns (stimuli 1–39) are high whereas the gamma responses are

relatively low compared to the grating responses. Another systematic difference between the two

types of responses is that broadband increases with the number of component gratings, whereas

narrowband gamma decreases with the number of component gratings (Figure 2E insets, showing

the responses to stimuli made from 1 (grating), 2 (plaid), or 16 (circular) component gratings).

Broadband changes are well predicted by a model developed for fMRI
A variety of models have been developed to predict visually evoked fMRI signals, ranging from sim-

ple linear isotropic pRF models (Dumoulin and Wandell, 2008) to high-dimensional filter models

with thousands of basis functions (Eickenberg et al., 2017; Güçlü and van Gerven, 2015;

Kay et al., 2008) to cascade models composed of a small number of canonical computations

(Kay et al., 2013b). (For a review see [Wandell and Winawer, 2015]). Since ECoG broadband

responses typically correlate well with BOLD in visual cortex (Hermes et al., 2017b; Winawer et al.,

2013), we tested whether a second-order contrast model (SOC) developed for fMRI could accurately

fit, and predict, the ECoG broadband signal (Kay et al., 2013b). The SOC model is a two-stage

LNN (Linear-Nonlinear-Nonlinear) cascade model. The first stage includes filtering the images with

oriented Gabor functions (L), rectification (N), and divisive normalization (N). The second stage

includes spatial summation within a pRF (L), calculation of second-order contrast (N) and a compres-

sive nonlinearity (N). Figure 3 shows the ECoG broadband responses for two example electrodes in

each of the three subjects measured in V1, V2 or V3 (all electrodes are shown in Figure 3—figure

supplements 1–2). The SOC model was fit to the broadband changes, using leave-one-stimulus-out

Figure 2 continued

DOI: https://doi.org/10.7554/eLife.47035.004

The following figure supplements are available for figure 2:

Figure supplement 1. Stimuli 1-20.

DOI: https://doi.org/10.7554/eLife.47035.005

Figure supplement 2. Stimuli 21-40.

DOI: https://doi.org/10.7554/eLife.47035.006

Figure supplement 3. Stimuli 41-60.

DOI: https://doi.org/10.7554/eLife.47035.007

Figure supplement 4. Stimuli 61-80.

DOI: https://doi.org/10.7554/eLife.47035.008

Figure supplement 5. Stimuli 81-86.

DOI: https://doi.org/10.7554/eLife.47035.009
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cross-validation to control for overfitting and to obtain unbiased estimates of model performance.

Although there are some discrepancies (especially in stimuli 79–86), the model fit the data well over-

all and explained an average of 80% (coefficient of determination) of the cross-validated variance

across the 15 ECoG electrodes.

Figure 3. Second-order contrast (SOC) model accounts for ECoG broadband responses. Each row shows the percent signal change in ECoG

broadband power for all 86 stimuli for six of the 15 electrodes on V1, V2 or V3. Error bars display the 68% range for bootstrapped responses

(bootstrapped across repeated presentations of the same stimuli). The SOC model was fit to these data using leave-one-stimulus-out cross-validation.

The cross-validated predictions and amount of variance explained are shown in red. The blue dots indicate that the stimulus response was significantly

greater than baseline (p<0.05, bootstrap test). Code to reproduce this figure can be found on GitHub (Hermes, 2019).

DOI: https://doi.org/10.7554/eLife.47035.010

The following figure supplements are available for figure 3:

Figure supplement 1. Second-order contrast (SOC) model accounts for ECoG broadband responses for electrode 1–8.

DOI: https://doi.org/10.7554/eLife.47035.011

Figure supplement 2. Second-order contrast (SOC) model accounts for ECoG broadband responses for electrodes 9–15.

DOI: https://doi.org/10.7554/eLife.47035.012

Figure supplement 3. Broadband power changes calculated for a time window after the evoked response.

DOI: https://doi.org/10.7554/eLife.47035.013
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An image-computable model of narrowband gamma responses
The striking difference in the selectivity observed in gamma responses compared to BOLD and

broadband motivated us to develop a new model. Whereas the SOC model predicts increased

responses for images with multiple orientations (e.g., plaids compared to gratings) and for moder-

ately sparse patterns compared to gratings, the gamma selectivity exhibits the opposite pattern. We

propose a new model, called the Orientation Variance (OV) model, that computes variance across

the outputs of spatially pooled orientation channels within a pRF. Similar to the SOC model, the OV

model builds on known computations in the visual cortex, but differs in the way signals are pooled

across orientation bands (Figure 4). In particular, the model first sums outputs across space within

an orientation band. This computation can be thought of as an analog to the long-range horizontal

Figure 4. Orientation Variance (OV) model of gamma responses and the Second Order Contrast (SOC) model of broadband responses. Top: in the OV

model, responses are largely driven by contrast and variance across orientations in the population receptive field. (A) Oriented contrast energy. Images

are filtered with quadrature pair Gabor filters occurring at eight orientations. The quadrature pairs are summed across phase, resulting in eight images

with contrast energy for each orientation. (B) The contrast energy within each of these eight images is summed within a population receptive field

defined by a Gaussian with parameters x, y and s. This results in eight values, indicating the summed contrast energy within the pRF for each

orientation. (C) Variance is calculated across these eight values, followed by a power-law nonlinearity (n) and a gain (g). Intuitively, the model predicts a

large response when only one or a few orientations have high contrast energy and a low response when all orientations have similar contrast energy.

Bottom: in the SOC model, responses are driven by contrast and variance across space in the population receptive field. (D) Contrast energy. The first

step that generates oriented contrast energy images is the same as the OV model (see A). (E) Divisive normalization and summation across orientations.

This results in a contrast image where information about variance across orientation is lost. (F) The image is then filtered by the population receptive

field defined by a Gaussian with parameters x, y and s and the variance in contrast compared to the mean contrast is calculated with parameter c

indicating the extent to which the output is driven by the mean contrast versus the variance in contrast. (G) A power-law nonlinearity (n) and a gain (g)

finally yields the predicted response. Intuitively, the model predicts a large response for increasing contrast and the c parameter determines the extent

to which the predicted response is enhanced by variation in contrast across the pRF.

DOI: https://doi.org/10.7554/eLife.47035.014
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connections in visual cortex, which preferentially connect cortical columns tuned to the same orienta-

tion (Gilbert and Wiesel, 1983; Hata et al., 1988).

In the OV model, images are first filtered with oriented Gabor patches and combined across

quadrature phase (contrast energy), as in the first stage in the SOC model (Figure 4A). This results

in eight oriented contrast-energy images, one image per orientation band. However, unlike the SOC

model, the OV model then sums the contrast energy of each of the orientation images within the

pRF, resulting in eight values, one for each orientation band (Figure 4B versus Figure 4E). The moti-

vation for this is that gamma oscillations tend to be driven by images dominated by a single orienta-

tion; pooling within a band preserves information about the response level of each orientation band

summed over space. This is in contrast to the SOC model of BOLD and broadband, which combines

the local responses across orientation bands first and then pools over space (Figure 4E–F). Finally,

the OV model calculates the variance across the eight values, followed by a power-law nonlinearity

(exponent n) and a multiplication with a gain (g) to predict the ECoG response (Figure 4C). The key

property of the OV model is that it allows variance across orientation to drive the predicted

response.

We illustrate the model behavior with a few simple texture patterns (for model parameters

n = 0.5 and g = 1). The OV model predicts a large response when variance across orientations is

high and a small response when variance is low. For simplicity, we assume the pRF is as large as the

image patch. For a grating pattern, one orientation channel has a large output (high contrast

energy), the two neighboring channels have medium outputs, and the five others have small outputs

(top left Figure 5). When the grating is reduced in contrast (bottom left Figure 5), the relative out-

puts of the orientation bands are unchanged, but the variance is lower. If a second, perpendicular

grating is overlaid on the first to create a plaid pattern, matched to the grating in total root mean

square (RMS) contrast energy (summed across bands), variance is lower (top right Figure 5), and

hence the predicted signal is lower. Finally, for a pattern with many orientations at approximately

equal contrast, such as in the case of the curved patterns (bottom right Figure 5), the variance will

be quite low. The OV model thus has two important properties: first, the output increases with con-

trast within the pRF (high contrast gratings produce higher responses than low contrast gratings),

and second, the output increases with increasing variance across orientated contrast energy within

Figure 5. Behavior of the OV model. For each example stimulus, the contrast energy within each of 8 orientation bands is summed across the image

(bar plots), which simulates the response for a large receptive field spanning the whole image. The variancen (with n = 0.5) across these eight values,

monotonically related to the output of the model, is displayed next to the bar plots. This value increases with stimulus contrast (upper left versus lower

left) and increases with sparsity of orientations: the high-contrast grating with few orientations present (upper left) has a higher output than the plaid

with several orientations present (upper right), which in turn has a higher output than the curved pattern with many orientations (lower right). Code

to reproduce this figure can be found on GitHub (Hermes, 2019).

DOI: https://doi.org/10.7554/eLife.47035.015
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the pRF (gratings produce higher responses than plaids, and plaids produce higher responses than

curved patterns, consistent with the observed data in Figure 2E, insets).

Gamma responses are well predicted by a model that is sensitive to
variation in orientation content
We tested how well the OV model explains narrowband gamma responses across the 86 images.

For all electrodes, gamma responses across the 86 stimuli are largest for the high contrast grating

stimuli of different orientations (Figure 6B, stimuli 39–46 and Figure 6—figure supplements 1–

Figure 6. Orientation Variance (OV) model predicts selectivity of gamma responses. (A) The population receptive field for each electrode was defined

by a Gaussian, indicated by the 1- and 2-sd contours (solid and dotted red lines). (B) The gamma power in percent signal change for six of the 15

electrodes (rows) for all 86 stimuli. Error bars display the 68% range for the bootstrapped responses. The cross-validated predictions of the OV model

and overall variance explained (R2) are shown in red. The blue dots indicate that the stimulus response was significantly greater than baseline (p<0.05

by bootstrap test). Code to reproduce this figure can be found on GitHub (Hermes, 2019).

DOI: https://doi.org/10.7554/eLife.47035.016

The following figure supplements are available for figure 6:

Figure supplement 1. Orientation Variance (OV) model predicts selectivity of gamma responses for electrodes 1–8.

DOI: https://doi.org/10.7554/eLife.47035.017

Figure supplement 2. Orientation Variance (OV) model predicts selectivity of gamma responses for electrodes 9–15.

DOI: https://doi.org/10.7554/eLife.47035.018

Figure supplement 3. Gamma power changes calculated for a timewindow after the evoked response.

DOI: https://doi.org/10.7554/eLife.47035.019
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2). Gamma is much lower for gratings of reduced contrast (47-50) and plaid patterns (51-55), and is

especially weak for circular patterns (stimuli 55–58), with many orientations.

We consider the gamma response to circular patterns to be weak despite the fact that the per-

cent signal change is, for some electrodes, about 20%. In general, the percent signal change is

higher for gamma than for broadband, and much higher for broadband than for BOLD (see Fig-

ure 2). Percent signal change is not easily interpretable without a model of how the signal is gener-

ated or a baseline to compare against: for example, a 1% increase in BOLD fMRI signal is likely to

correspond to a much larger percent signal change in neuronal firing rate (Heeger et al., 2000).

Because we do not yet have links between measured gamma, broadband, and BOLD responses in a

quantitative model of the neuronal generating signal, we instead compare each type of signal to its

own baseline. For the gamma and broadband responses, we compare the stimulus-driven responses

against the responses observed during baseline (blank screen). At baseline, the gamma response

often reaches 77% signal change (upper boundary of the 68% confidence interval, averaged across

electrodes), whereas the broadband response often reaches just 7% signal change (same metric).

Hence, a 10% or 20% increase in gamma (for example, observed for the circular gratings) is well

within the baseline variability. In contrast, a 10% or 20% increase in broadband is above the baseline

variability. Using this approach, we found that the gamma responses to gratings were highly signifi-

cant compared to baseline (bootstrapping across trials; see Materials and methods), whereas the

responses to circular patterns were not for most electrodes (Figure 6, all panels).

Overall, the OV model accounted for the pattern of gamma responses well, with an average of

75% cross-validated variance explained across electrodes. The OV model has five parameters: the

location and size of the pRF (x, y and s), a gain factor (g) and an exponent (n). The pRF center and

size were derived from separate data, as they could not be robustly obtained by fitting a model to

the gamma responses across the 86 images. This is because the stimuli that varied systematically in

spatial position (images 1 to 38) induced very little gamma response. We fixed the x and y position

of the population receptive field based on the SOC fits to the broadband data (Figure 3). The sigma

parameter was derived from the center parameters (x, y) based on an assumed linear relationship

between pRF size and eccentricity as reported in Kay et al. (2013a) (Figure 6A).

Therefore, the only free parameters in fitting the OV model to the gamma responses were the

exponent (n) and the gain (g). We evaluated a

range of values for n ({.1 .2 .3 .4 .5 .6 .7 .8 .9 1})

and directly fit the gain, and used a leave-one-

out cross-validation scheme in order to obtain

unbiased estimates of model accuracy. Across

electrodes an exponent of n = 0.5 predicted

most variance in the left-out data, and results

with this exponent are reported throughout this

paper.

The OV model explained significantly more

variance in the gamma responses (75%) com-

pared to the SOC model (62%) (p<0.005 by a

paired t-test on Fisher transform of the R2), see

Figure 7 (red) and Table 1. The OV model also

explained significantly more variance in the

gamma responses compared to a mean model,

which predicts the same response level to all

stimuli (26%, p<0.001, see

Materials and methods).

Conversely, the SOC model explained signifi-

cantly more variance in the broadband

responses (80%) compared to the OV model

(24%) (p<0.001), see Figure 7 (blue) and Table 1.

The SOC model also explained significantly

more variance in the broadband responses com-

pared to a mean model (41%) (p<0.001).

Figure 7. OV and SOC model performance on

broadband and gamma power. The model

performance (R2) was quantified using the coefficient of

determination. The x-axis shows the model

performance of the OV model fit to the narrowband

gamma power (red) and broadband power (blue). The

y-axis shows the model performance of the SOC model

fit to the gamma power (red) and broadband power

(blue). The small dots show the performance for

individual electrodes and the large dot indicates the

mean + /- two standard errors. Code to reproduce this

figure can be found on GitHub (Hermes, 2019).

DOI: https://doi.org/10.7554/eLife.47035.021
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The model comparisons we have performed suggest that fundamentally different computations

underlie broadband and gamma responses. This modeling work complements the experimental

observation that the pattern of response is strikingly different for broadband and gamma (Figure 2).

Grating-like features in the pRF strongly drive gamma oscillations
The OV model is sensitive to the distribution of contrast energy across orientations within the pRF,

but not to image structure remote from the pRF. Because different electrodes have different pRFs,

the output of the model can differ between electrodes in response to the same image, and between

exemplars of images taken from the same stimulus class (e.g. natural images) for the same

electrode.

To illustrate the importance of taking into account the specific pRF location associated with an

electrode, we consider several examples. For a stimulus whose orientation changes over space

(Figure 8A, left), a large pRF is likely to sample a wide range of orientations. As a result, the spatially

summed outputs of different orientation bands are similar, and the variation across these outputs is

low. For this reason, for an electrode with a large pRF, the predicted response to the slowly curving

pattern (stimulus 10) is smaller than the predicted response to a grating (stimulus 50) (Figure 8B

left). This prediction is borne out by the data: gamma is much smaller for the curved patterns com-

pared to the gratings for this electrode (Figure 8B, left panel). In contrast, a very small pRF, such as

in foveal areas of visual cortex (electrode 8), is likely to be exposed to a single dominant orientation,

even when the full image contains many orientations. As a result, for a small pRF, the OV prediction

is similar for the curved patterns and a grating stimulus (Figure 8B, right panel). This example illus-

trates that it is critical to consider the precise receptive field location of an electrode when investi-

gating gamma oscillations.

The importance of precise pRF locations can also be appreciated by considering responses of a

foveal electrode to a variety of curved patterns (Figure 8C–D). When the stimulus is relatively sparse,

the small pRF may be exposed to a single dominant orientation (stimuli 10 and 77), resulting in large

predicted responses, or no contrast at all (stimuli 76 and 78), resulting in little response. When the

stimulus is very dense (stimulus 74), the pRF is likely to be exposed to many orientations, resulting in

relatively weak responses. This general pattern of responses is observed in the data, demonstrating

that it is critical to take into account the specific pRF location for a visual electrode in order to under-

stand the nature of gamma oscillations.

Predicting gamma oscillations in the context of natural vision
To better understand gamma oscillations in the context of natural vision, we computed the outputs

of the OV and SOC models to a large collection of natural images (Olmos and Kingdom, 2004).

These computations reveal a few interesting patterns. First, the outputs of the two models show

some degree of positive correlation, consistent with the fact that both model outputs increase with

stimulus contrast within the pRF (Figure 9). Second, the responses to gratings are distinct from the

responses to natural images, especially for models with larger pRFs (upper panel). This is because

the OV output to gratings is unusually high compared to natural images, whereas the SOC output is

within or close to the range of outputs to natural images. These patterns are generally consistent

across models fit to the 15 electrodes we tested (Figure 9—figure supplement 1). High-contrast

gratings are often used in studies of gamma oscillations, for example (Eckhorn et al., 1988;

Hoogenboom et al., 2006; Rohenkohl et al., 2018); using these stimuli as a benchmark, we find

that the OV outputs for natural images are, in general, strikingly low. However, natural images occa-

sionally have oriented high-contrast energy within the pRF and these give rise to large OV output

(Figure 9). Hence, the image properties to which the OV model is sensitive exist in natural images,

Table 1. Variance explained by different models (coefficient of determination).

Data

Model

Mean SOC OV

Broadband 41% 80% 24%

Gamma 26% 62% 75%
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but in far lower quantities than they do for oriented gratings (and other stimuli such as bars

[Gray and Singer, 1989; Gray et al., 1989] and circular gratings [Hoogenboom et al., 2006] that

are locally similar to oriented gratings). Note that the range of the OV outputs for these natural

images (on the order of ~100%) is comparable to the gamma band responses measured in monkey

ECoG to gray-scale natural images reported by Brunet et al. (2015). To the degree that the OV

model accurately predicts narrowband gamma responses and the SOC model accurately predicts

broadband responses, these results indicate that for most natural gray-scale images (with occasional

exceptions), relatively low levels of gamma oscillations are expected.

Finally, we note that the absolute scale of the responses differs substantially between the models,

with a larger maximal response for the OV model, especially for gratings. For example, there is up

to 2000% signal increase over baseline in the OV model compared to 300% for the SOC model

(Figure 9B). This difference in amplitude exists not only in the model outputs, but also in the data,

as shown earlier (e.g., Figures 2, 3 and 6).

Figure 8. Grating-like features in the pRF strongly drive gamma oscillations. (A) The population receptive fields (pRF) of two electrodes are overlaid on

two different curved patterns (stimulus 10 and 50). Electrode four has a large pRF, while electrode eight has a very small pRF. (B) The left panel shows

that for electrode 4, the OV model predicts a small response for the curved lines and a large gamma response for the grating pattern (red dots). As

predicted, there is a small gamma response for the curved lines and a large response for the grating stimulus. Blue circles on the bottom zoom into the

stimulus in the pRF. The right panel shows that for electrode 8, the OV model predicts a similar response for the image with curved lines and the image

with a grating. As predicted, there is a large gamma response for the curved lines and a large response for the grating stimulus. Green circles on the

bottom zoom into the stimulus in the pRF and this shows that from the curved lines, only a relatively straight line falls in the pRF. (C) Six different

images with curves differing in sparseness (stimulus 10, 74, 75, 75, 76, 77 and 78). The population receptive field (pRF) of electrode seven is overlaid

with one and two standard deviations (solid yellow and dotted yellow). (D) The OV model predicts the largest response when a grating-like feature hits

the pRF (red dots). As predicted, the largest gamma responses are observed when the pRF contains grating-like features. Yellow circles on the bottom

zoom into the pRF content of each of the stimuli. Error bars display the 68% confidence interval (across bootstraps), and the close up of image in the

pRF show the outline of the pRF at 1 and 2 standard deviations (straight and dashed). Code to reproduce this figure can be found on

GitHub (Hermes, 2019).
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Discussion
Narrowband gamma power is highly stimulus dependent, as observed in a number of studies. For

example, there are large gamma oscillations in response to bars and gratings measured by electro-

encephalography (EEG) (Murty et al., 2018; Scheeringa et al., 2011), magnetoencephalography

(MEG) (Hoogenboom et al., 2006; Muthukumaraswamy and Singh, 2009;

Muthukumaraswamy and Singh, 2008), and microelectrode local field potentials (LFP) (Gray and

Singer, 1989; Gray et al., 1989). In contrast, other studies have found little gamma response to

noise patterns (Bartoli et al., 2019; Hermes et al., 2015; Jia et al., 2013) and many natural images

Figure 9. OV and SOC model predictions for images of natural scenes. (A) The OV and SOC outputs are plotted for a set of gray-scale photographs of

scenes, with model parameters from electrode 3. The units are in percent signal change, as in Figures 3 and 6. Each gray dot is the output of the two

models for one image. The red dots are the model outputs for grating stimuli of varying contrast. The cluster of red dots at 100% contrast displays

high-contrast gratings of different orientations (stimuli 39–46). The green and blue dots correspond to two images with large OV and SOC outputs,

respectively. The right panels show these two images with the electrode pRF location superimposed (1 and 2 SDs). Natural image 1, with a high OV

output, has image features in the pRF that look like a grating. The OV output to images of natural scenes are much lower than the responses to high

contrast gratings. (B) Same as panel A, but for electrode 8, including a zoom into the pRF location. Code to reproduce this figure can be found on

GitHub (Hermes, 2019).

DOI: https://doi.org/10.7554/eLife.47035.023

The following figure supplement is available for figure 9:

Figure supplement 1. OV and SOC model predictions for images of natural scenes for all electrodes.
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(Hermes et al., 2015; Kayser et al., 2003). Here, we recorded ECoG data from three subjects view-

ing 86 static, band-passed, grayscale images and developed an image-computable model to predict

the level of gamma oscillations observed for these 86 stimuli.

Stimulus selectivity of gamma oscillations in visual cortex
The most salient observation is that the narrowband gamma responses were much sparser than the

broadband responses. The gamma responses were large for only a few stimuli tested (high contrast

gratings), and relatively small or even within the experimental noise for most other stimuli (e.g.,

noise patterns and textures with a lot of curvature). The sparseness in the narrowband gamma

responses was not due to a lack of image contrast or measurement sensitivity. Many of the stimuli

that elicited little measured narrowband gamma responses nonetheless elicited large broadband

responses. In fact, large broadband responses were observed for most stimuli tested, including all

stimuli with high contrast within the electrode’s receptive field (pRF). The much greater sparseness

in the narrowband gamma compared to broadband responses was a highly consistent finding,

observed in every electrode studied (n = 15, coming from three subjects and spanning V1-V3). Thus,

despite the modest number of subjects tested, it is highly likely that these findings will generalize

and replicate.

The sparseness in the narrowband gamma responses is striking not just in comparison to the

broadband responses reported here, but also in comparison to fMRI responses to the same stimuli

measured previously (Kay et al., 2013b). Like broadband, the fMRI response was large for all stimuli

with high contrast in the pRF and tended to be larger for curved patterns than for gratings. The simi-

larity in stimulus selectivity between fMRI and broadband is consistent with a number of other stud-

ies indicating good agreement between the two types of signals. These studies span multiple

cortical areas and stimulus manipulations, including motor cortex and finger movements

(Hermes et al., 2012), auditory cortex and natural movies (Mukamel, 2005), ventral temporal cortex

and category selectivity (Jacques et al., 2016), occipital cortex and spatial summation

(Winawer et al., 2013), and occipital cortex and pattern selectivity (Hermes et al., 2017b).

While the similarity between the broadband and fMRI responses appears to be widespread across

the brain, our conclusions about the sparseness of the narrowband gamma responses are specific to

visual cortex. The circuitry in primary visual cortex is unique, with its retinotopic structure, ocular

dominance stripes, and orientation columns (Wandell, 1995). The fact that two different brain

regions can exhibit oscillations at similar frequencies does not mean that their function is shared or

that the underlying neurophysiological mechanisms generating the oscillations are the same. For

example, gamma oscillations in the tectum of the barn owl (Sridharan et al., 2011), the nucleus

accumbens in humans (Miller et al., 2019) or the hippocampus of the rodent (Buzsáki et al., 1983)

likely have different circuit properties, neuronal origins and computational functions compared to

gamma oscillations in primate V1. In fact, even within the same cortical region—mouse V1—there

appear to be distinct types of gamma rhythms with different stimulus sensitivities and different bio-

logical origin (Saleem et al., 2017). Conclusions about gamma oscillations in human visual cortex

can thus not be directly transferred to other systems without careful testing.

The orientation-variance (OV) model of gamma responses
Because of the similarity in stimulus selectivity between broadband and fMRI, the same model (SOC)

was appropriate to explain both measurements (Kay et al., 2013b). The strikingly different stimulus

selectivity of the narrowband gamma responses motivated us to develop a novel image-computable

model, the Orientation-Variance (OV) model. The OV model is sensitive to the variation across the

spatially pooled outputs of the orientation channels in the population receptive field. The two mod-

els share a common first stage, in which contrast energy is computed. As a result, both models pre-

dict that response amplitudes should increase with stimulus contrast, in agreement with the

observation that fMRI, broadband, and narrowband ECoG responses all increase with contrast. The

subsequent calculations of the two models differ, particularly in the order of operations. The SOC

model first sums across orientation at each spatial location and then computes variance across

space. As it sums across orientations, it loses sensitivity to variance across orientations. The OV

model does the opposite, first summing across space (within each orientation band) and then com-

puting variance across orientations. As it sums across space, it loses sensitivity to variance across
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space. The difference in the order of operations has a large effect on the image properties that are

emphasized by the model. The SOC model is blind to the variance in orientations within the popula-

tion receptive field and the OV model is blind to the variance in contrast energy across space within

the population receptive field. Also, the SOC model penalizes images (lowers the response) when

contrast is high everywhere, akin to surround suppression. Because the OV model first sums across

space, responses grow with stimulus size, as is observed for gamma oscillations but not spiking

(Gieselmann and Thiele, 2008; Jia et al., 2013; Ray and Maunsell, 2011; Self et al., 2016) or

BOLD (Press et al., 2001; Zenger-Landolt and Heeger, 2003; Zuiderbaan et al., 2012).

For both models, the computations are made within the population receptive field. Therefore,

the question of whether gamma is induced by an image, like the question of whether any neural sig-

nal is induced by an image, is only sensible if we take into account the specific receptive field loca-

tion of the neurons or neuronal population under consideration, as shown in Figure 8. The OV

model implies that the number of orientations within the population receptive field needs to be

taken into account in order to predict gamma oscillations.

In this study we used carefully designed stimuli to understand which image features drive gamma

oscillations. There are several other parameters that could be explored. For example, color has

recently been shown to strongly modulate gamma (Peter et al., 2019; Shirhatti and Ray, 2018). In

addition, other features present in natural images were not explored in our measurements, but only

with simulations. Using well controlled stimuli, our data show that image contrast (first order con-

trast) and variations in contrast (second order contrast) are, in and of themselves, not sufficient to

elicit robust gamma oscillations.

While the OV model was in development, another group independently tested models of gamma

oscillations in visual cortex using images of complex objects and scenes, reaching opposite conclu-

sions (Brunet and Fries, 2019). Inferring the stimulus properties that drive neural responses from

such studies is difficult because of unmodeled correlations that are widespread in natural images

(Rust and Movshon, 2005). The advantage of carefully controlled stimulus properties is that the

interpretation of the results is more straightforward, as is the link between the computations in the

model and the pattern of responses. Future work will be required to link our models of spatial pat-

tern to models developed for natural images and models of chromatic sensitivity.

Different origins of broadband and narrowband gamma
The different stimulus selectivity in the broadband and the gamma responses was emphasized by

choices we made both in the selection of stimuli and in the analysis of the data. For example, had

we only used gratings of varying contrast, the gamma, broadband, and BOLD signals would have

been found to collectively rise together (though perhaps differing in the precise shape of the con-

trast response functions [Henrie and Shapley, 2005; Lima et al., 2014]). Similarly, when using only

grating stimuli which elicit large gamma responses, for example (Scheeringa et al., 2011), trial-to-

trial variance in responses may reflect global factors such as attention or arousal; these global factors

might modulate multiple signals, such as gamma power and BOLD, thereby causing the two signals

to be correlated within the experimental paradigm. By systematically exploring variation in stimulus

properties such as the number of component orientations (gratings vs plaids vs circular patterns), we

were able to reveal opposing effects on broadband and gamma responses, similar to the effects of

manipulating stimulus size, which has opposite effects on the level of broadband and gamma

responses (Ray and Maunsell, 2011). These different response patterns show the importance of

testing a wide range of stimuli.

The method of separating the ECoG measurement into two components was also important. Had

we simply characterized the gamma response as the band-limited power increase over baseline, the

gamma responses would have appeared less sparse. For example, the noise patterns in Figure 1

cause power increases in the gamma band (~30–80 Hz) for two of the three electrodes. However,

because the power increase spans higher frequencies and contains no clear peak, the response is

better characterized as a broadband response, rather than as a narrowband gamma oscillation

(Lopes da Silva, 2013). This is reflected in how we compute the two signals. We do not assume a

direct relationship to temporal frequency bands since the two signals can overlap in their spectra;

rather, we take a model-based approach in which we separate out a peaked response (oscillatory)

from one that is non-peaked (broadband). This approach is motivated by the fact that the two

responses can be modulated independently (e.g., the peaked response decreases with the number

Hermes et al. eLife 2019;8:e47035. DOI: https://doi.org/10.7554/eLife.47035 15 of 28

Research article Neuroscience

https://doi.org/10.7554/eLife.47035


of orientations, whereas the broadband response increases). Additionally, independent modulation

of a broadband component spanning frequencies from 1 to 200 Hz has been previously demon-

strated by principal components analysis of spectral power (Miller et al., 2009a). Studies that do

not explicitly separate broadband and narrowband gamma oscillations might draw conclusions

about the function of narrowband oscillations when the signals measured could, in fact, reflect

broadband responses.

We observed that percent signal change in gamma responses is much larger than that for broad-

band responses. Broadband responses are thought to arise from asynchronous neural activity

(Miller et al., 2009b), which results in substantial cancellation in the pooled field potential

(Butler et al., 2017; Hermes et al., 2017b; Krusienski et al., 2011; Winawer et al., 2013). Narrow-

band gamma responses, in contrast, are thought to reflect synchronous activity across a neuronal

population (Hasenstaub et al., 2005; Jia et al., 2013). The synchronous response, even if it comes

from a much smaller neuronal population, can result in a much larger macroscopic field potential

(Butler et al., 2017; Hermes et al., 2017b; Winawer et al., 2013). This likely explains why gamma

oscillations, even when the percentage signal change is quite large, can show little correlation with

the BOLD signal (Butler et al., 2017; Hermes et al., 2017b) or multiunit activity (Jia et al., 2013;

Ray and Maunsell, 2011). Hence the large size of the field potential generated by gamma oscilla-

tions does not imply a high level of neuronal population activity in terms of energy demand or spike

rates. Similarly, a large neuronal response can occur in the absence of gamma oscillations. For exam-

ple, multiunit recordings in macaque V1 and MT to sweeping bars showed oscillating responses in

only 2 of 424 recordings, while noting increases in firing rates and broadband LFP (Young et al.,

1992). In contrast, substantial increases in broadband power generally correlate with both high

energy consumption (Hermes et al., 2017b; Winawer et al., 2013) and high firing rates

(Manning et al., 2009; Ojemann et al., 2013; Ray and Maunsell, 2011) (though for an exception

see [Leszczynski et al., 2019]).

Relevance for neuronal and cognitive function
The highly specific stimulus selectivity of narrowband gamma raises questions about the potential

functions of this signal. A wide range of cognitive and neural functions have been attributed to

gamma oscillations, including perceptual binding of visual features (Eckhorn et al., 1988;

Gray et al., 1989), prioritizing communication of certain visual information over other information

(Fries, 2005), and visual awareness (Engel and Singer, 2001). These theories do not lead to quanti-

tative predictions about the amplitude of gamma oscillations that one would expect from specific

images. However, it is reasonable to expect that if gamma oscillations are a leading cause of visual

awareness, or of feedforward visual communication, then the oscillations should be observed for any

clearly visible stimulus. If there is a general role of gamma oscillations in typical brain function, it is

not clear why oscillations would be large for oriented gratings and minimal or possibly absent for

curved patterns or stimuli with multiple orientations. At high contrast, all of these stimuli are easily

visible and all of them elicit robust signals in visual cortex as measured with fMRI and broadband

ECoG. Moreover, these stimuli would be expected to elicit strong multiunit responses, given typical

models of action potentials in neuronal populations in primary visual cortex (e.g., [Carandini et al.,

2005; Rust et al., 2005]).

Finally, it is reasonable to suppose that stimuli require transmission to downstream visual areas in

support of recognition and behavior. In fact, fMRI studies show that stimuli such as circular patterns,

which elicit no detectable narrowband gamma signal beyond baseline signal levels, do evoke large

and reliable BOLD signals in higher visual areas such as hV4 (Kay et al., 2013b). Hence visual signals

are transmitted along the visual hierarchy for stimulus features to which we measure no reliable nar-

rowband gamma signals in the corresponding retinotopic locations of V1. This suggests that it is

unlikely for gamma oscillations to be the primary means of communicating long-range feedforward

visual information. Nonetheless, there are several reasons why we cannot entirely rule out a possible

role of narrowband visual gamma oscillations in various cognitive tasks. One is that theories propos-

ing a role for gamma oscillations are pitched at a general level and do not make quantitative predic-

tions about the amplitude of the oscillations for specific stimuli or conditions. Thus, it is difficult to

falsify such theories. Secondly, we acknowledge that there may be small oscillations that are not

detectable using our current measurement methods. It is therefore possible that very small oscilla-

tions exist and serve critical functions. In this study, rather than asking whether a signal such as
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gamma oscillations is present or absent (in one or a few stimulus conditions), we sought to develop

a predictive, quantitative model that provides a more detailed characterization of the signal (across

many stimulus conditions). We believe that this has provided important insights into the nature of

gamma oscillations.

The OV model developed in this study is agnostic with respect to the downstream effects that

gamma oscillations cause when they are present. Large oscillations are likely to influence spiking

excitability (Jensen et al., 2007) or information transfer (Besserve et al., 2015). A complete theory

of the relationship between gamma oscillations and any cognitive or neural function, however, must

also account for cases where oscillations are small or absent, and should also be able to predict their

level given the visual input.

Gamma oscillations and gain control
Although our study was not designed to test a particular function of gamma oscillations, our results,

as well as previous reports, provide some important clues. Both in this report and elsewhere

(Gieselmann and Thiele, 2008; Henrie and Shapley, 2005; Jia et al., 2013; Ray and Maunsell,

2011), large-amplitude gamma oscillations are found for stimuli that are high in contrast, spatially

extended, and with few orientations. These three image properties—contrast, spatial extent, and

limited orientations—all produce larger outputs in the OV model, and interestingly, are all associ-

ated with gain control or suppression in neuronal circuits.

First, stimulus contrast has been linked to inhibition in divisive normalization models of primary

visual cortex (Heeger, 1992). According to this model, gain control increases with local stimulus con-

trast, possibly via shunting inhibition (an increase in membrane conductance) or a reduction in recur-

rent amplification (Sato et al., 2016). Although neuronal responses such as spike rates tend to

increase with contrast, the rate of increase is slower at higher contrast (Albrecht and Hamilton,

1982), consistent with mechanisms of increasing gain control at higher contrast (Albrecht and Geis-

ler, 1991; Heeger, 1992). Second, stimulus extent is linked to suppression in that larger stimuli stim-

ulate the inhibitory surrounds of neuronal receptive fields, thereby reducing the neuronal response

(Allman et al., 1985). Third, for a large stimulus, surround suppression is more effective when an

annulus and a central stimulus match in orientation (Cavanaugh et al., 2002; DeAngelis et al.,

1994; Knierim and van Essen, 1992).

In summary, each of these three stimulus properties (high contrast, large spatial extent, limited

orientations) is associated with more gain control or suppression as well as a larger OV output, con-

sistent with the interpretation that gamma oscillations are a biomarker of gain control or normaliza-

tion, an idea previously proposed based on physiology data from macaque visual cortex (Ray et al.,

2013). Ray et al., (2013) showed that stimulus manipulations thought to increase normalization lead

to larger amplitude gamma oscillations. For example, when a null-motion stimulus is added to a pre-

ferred motion stimulus, spike rates decrease, indicating an inhibitory effect of the null motion stimu-

lus, and gamma oscillations increase in amplitude (Ray et al., 2013). Similar to our study, this shows

that a stimulus configuration that increases inhibition also increases the amplitude of gamma oscilla-

tions. We note that the link between gamma oscillations and gain control does not necessarily indi-

cate what causal role, if any, the oscillations have in neural processing. At a minimum, the

oscillations may serve as a biomarker of gain control circuits, useful to the experimenter but not nec-

essarily to the organism producing them. Whether or not the oscillations are critical for implement-

ing gain control requires further study.

One exception to the link between inhibition and gamma power in this study is the effect of the

number of component orientations: increasing the number of superimposed gratings decreases the

OV output and the power of narrowband gamma (Figure 3), yet causes an increase in cross-orienta-

tion suppression in visual cortex (Bonds, 1989; Morrone et al., 1982). This breaks the pattern by

which stimulus properties that cause more inhibition also cause larger-amplitude gamma oscillations.

Cross-orientation suppression and surround suppression differ in several ways, including in their tem-

poral properties, with surround suppression slightly delayed (Smith et al., 2006). This supports the

possible interpretation that cross-orientation suppression is inherited from earlier processing in a

feedforward manner, whereas surround suppression depends on intra-cortical connections (either

within a cortical area and/or via feedback). A large increase in gamma oscillations may therefore

reflect locally implemented inhibition, as in surround suppression, but not inherited suppression, as

in cross-orientation suppression. More generally, the fact that these two types of suppression likely
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have different underlying mechanisms, and different effects on gamma oscillations, highlights the

importance of considering the circuit-level implementation of computations such as suppression and

gain control.

At a more abstract level, the same image properties that are associated with gain control can

also be described as signatures of image redundancy (or predictability). Since gamma oscillations

tend to increase in the presence of gain control, they can also be described as increasing in the pres-

ence of image redundancy or predictability (Vinck and Bosman, 2016). In fact, early descriptions of

center-surround visual receptive fields proposed that surround suppression was part of a coding

strategy to compress signals elicited by natural images which contain a lot of redundancy in the form

of spatial correlations (Barlow, 1961).

Gamma oscillations and neuronal circuits
While there is growing evidence that gamma oscillations increase in the presence of gain control or

inhibition, the circuitry underlying these inhibitory mechanisms are not firmly established. For exam-

ple, contrast gain control modeled as divisive normalization might be implemented biologically as

shunting inhibition (synaptic inhibition which changes the neuronal membrane conductance)

(Carandini and Heeger, 1994; Carandini et al., 1997). In this implementation, the notion of inhibi-

tion in the model (signal reduction by division) is literally an increase in inhibitory neural signals.

Alternatively, normalization could be implemented by a circuit that reduces excitation, which in

turn also reduces inhibition rather than increases it, as is the case for inhibition-stabilized networks

(Ozeki et al., 2009; Tsodyks et al., 1997). In inhibition-stabilized networks, the un-normalized state

(e.g., low contrast, no suppressive surround) has a high level of recurrent excitation and inhibition,

with the inhibition serving to stabilize the network. Stimulus manipulations that result in an increase

in gain control, such as the addition of a surrounding stimulus or an increase in contrast, paradoxi-

cally result in a withdrawal of inhibition. This, in turn, destabilizes the network, allowing the activity

to either die off or explode. Gamma oscillations may be more likely to arise (or to increase in ampli-

tude) in this destabilized state. In the extreme, large, high-contrast oriented gratings can even trig-

ger seizures in patients with photosensitive epilepsy or cause discomfort in healthy subjects

(Harding et al., 2005; Hermes et al., 2017a; Wilkins et al., 1984).

A large number of studies have tried to explain the circuit mechanisms that underlie gamma oscil-

lations, including via explicit computational models (Ainsworth et al., 2012; Buzsáki and Wang,

2012; Womelsdorf et al., 2014). Some of these models are formulated with the goal of explaining

a particular stimulus sensitivity of computational function, and thus predict modulations in the ampli-

tude of gamma oscillations as a function of labeled stimulus properties, such as size or contrast

(Jia et al., 2013). This particular model consists of an excitatory and inhibitory neuron, representing

a cortical hypercolumn. Each neuron is driven by independent inputs and projects to itself and the

other neurons. In addition, a global component is included that represents more distributed inputs,

such as horizontal connections or input from higher order visual areas. The global component

receives input from the excitatory neurons and sends output to the inhibitory and excitatory neurons.

This model explains why firing rates and gamma frequency and power can change with different

types of inputs. Relating this model to our data, we can potentially imagine the global component

being driven by long-range horizontal connections between orientation columns in V1 with the same

orientation preference (Angelucci and Bressloff, 2006). Yet to our knowledge, none of the circuit

models for gamma oscillations operates on visual inputs in the sense of arbitrary pixel intensities, as

does our image-computable OV model and various models tested recently by Brunet and Fries

(2019). Our model, however, (as well as those from Brunet and Fries) does not describe the neuronal

circuitry that produces the oscillations. A more complete understanding of this intensely studied

neural signal will likely require a unified account that both generalizes to arbitrary images and also

specifies the circuitry that underlies oscillations.

Conclusions
Gamma oscillations in human visual cortex are elicited by distinct types of visual inputs that differ

from fMRI BOLD and ECoG broadband responses. We developed an image-computable ‘orienta-

tion-variance’ model, which accounts for the amplitude of gamma oscillations across many stimuli. In

this model, gamma oscillations are driven by increases in contrast and by variance across orientation
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channels in the population receptive field. These findings are consistent with the proposal that

gamma oscillations reflect circumstances in which neural circuits exhibit strong normalization or gain

control.

Materials and methods

Ethics statement and subjects
ECoG data were recorded in three subjects (mean age 28, two women) who had electrodes

implanted for the clinical purpose of epilepsy monitoring. Subjects gave informed consent and the

study was approved by the Stanford University IRB and the ethics committee at the University Medi-

cal Center Utrecht in accordance with the 2013 provisions of the Declaration of Helsinki.

Stimuli and task
Static visual images were viewed from a distance of ~50 cm and spanned approximately 20 degrees

of visual angle. Images were presented for 500 ms (stimulus period), followed by a gray screen for

500 ms (baseline period). There were 86 different gray scale images that contain spatial frequencies

of 3 cycles per degree. Images included curved lines with varying apertures spanning parts of the

visual field, full screen gratings varying in orientation, plaids, circular patterns with 16 orientations

and curved lines varying in contrast, gratings and curved lines varying in sparseness, gratings varying

in coherence and curved lines with different levels of noise. These stimuli could roughly be grouped

into the categories of SPACE (1 to 38), ORIENTATION (39 to 46), CONTRAST (47 to 68), SPARSITY

(69 to 78), and COHERENCE (79 to 86) All images are shown in Figure 2—figure supplement 1–5.

Images were created in similar manner as in Kay et al. (2013b), with only images 79-86 being a new

category. Each image was repeated several times (subject 1: 15 times, subject 2: nine times, subject

3: 12 times).

ECoG procedure
ECoG electrodes were placed on the left hemisphere in subject one and on the right hemisphere in

subjects 2 and 3. ECoG data were recorded at 1528 Hz through a 128-channel Tucker Davis Technol-

ogies recording system (http://www.tdt.com) (subjects 1 and 2) and at 2048 Hz through a 128-chan-

nel Micromed recording system (subject 3). To localize electrodes, a computed tomography (CT)

scan was acquired after electrode implantation and co-registered with a preoperative structural MRI

scan. Electrodes were localized from the CT scan and co-registered to the MRI, and positions were

corrected for the post-implantation brain shift (Hermes et al., 2010). Electrodes that showed large

artifacts or showed epileptic activity, as determined by the patient’s neurologist were excluded,

resulting in 116/107/54 electrodes with a clean signal. Offline, data were re-referenced to the com-

mon average, low pass filtered and the 1528 Hz data were resampled at 1000 Hz for computational

purposes using the Matlab resample function. Line noise was removed at 60, 120 and 180 Hz (Stan-

ford) using a third order Butterworth filter, data from UMC Utrecht did not contain much line noise

and were not filtered. In further analyses, we only included electrodes that were located on visual

areas V1, V2 or V3 with population receptive fields that were within the stimulus (~10 degrees from

the fovea).

ECoG analyses
Time frequency analysis
Time frequency analysis was performed around stimulus onset (�500 to 1000 ms) with a multitaper

approach (Percival and Walden, 1993) using chronux (http://www.chronux.org/; Mitra and Bokil,

2008). A moving window of 200 ms (with overlap of 50 ms) and the use of 5 tapers result in a fre-

quency resolution of 5 Hz, with a spectral smoothing of ±15 Hz. To normalize the responses to base-

line, the average spectrum from all inter trial intervals 250–500 ms after stimulus offset was

computed and divided from every time bin. The base 10 log was then computed on this normalized

power and plotted (Figure 1).
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Spectral analysis
We calculated power spectra and separated ECoG responses into broadband and narrowband

gamma spectral power increases in similar manner as before (Hermes et al., 2015). For each stimu-

lus and baseline epoch, the average power spectral density was calculated every 1 Hz by Welch’s

method (Welch, 1967) with a 200 ms window (0–500 ms after stimulus onset, 100 ms overlap). A

Hann window was used to attenuate edge effects. The evoked potential did not have a large effect

on our results: phase locking plots of the data indicated that most power resided below 30 Hz (Fig-

ure 1—figure supplement 1) and similar results were obtained when analyzing the window from

200 to 500 ms (after the evoked potential is complete, Figure 3—figure supplement 3, Figure 6—

figure supplement 3).

ECoG data are known to obey a power law and to capture broadband and narrowband gamma

increases separately, the following function (F) was fitted to the average log spectrum from 30 to

200 Hz (leaving out 60 Hz line noise and harmonics) from each stimulus condition:

F xð Þ ¼ bbroadband � nxð Þ þ bnarrowbandG xj�;sð Þ

In which,

x¼ log10 frequencyð Þ

G xj�;sð Þ ¼ 1

s
ffiffiffiffiffiffi

2p
p e

� x��ð Þ2
2s2

with 0:03<s<0:08 and 30Hz<10�<80Hz.

This function allows broadband and gamma components to vary independently in the measured

data. The slope of the log-log spectral power function (n) was fixed for each electrode by fitting it

based on the average power spectrum of the baseline.

Bootstrapping and confidence intervals
Confidence intervals were estimated using a bootstrap procedure: for each stimulus condition C

with Nc trials, Nc trials were drawn randomly with replacement and power spectra were averaged.

The function F was fit to the average log10 power spectrum from these trials and the b parameters

were estimated. This was repeated 1000 times, resulting in a distribution of broadband and narrow-

band weights. The same was done to calculate confidence intervals for the baseline period.

Converting model estimates to percent signal change
The b parameters in function F(x) have units of log10 power and from this we derived the percent sig-

nal change in broadband and gamma power. The percent signal change is defined as:

percent signal change ¼ taskPower

baselinePower
� 1

� �

� 100

in which,

broadbandTaskPower

broadbandBaselinePower
¼ 10

broadband

with

broadband¼ bbroadbandTask �bbroadbandBaseline

and,

gammaTaskPower

gammaBaselinePower
¼ 10

gamma

with
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gamma¼ bgammaTask

Given the assumption that gamma power is close to zero during the baseline period.

Significance testing
To test whether responses to a particular stimulus differed significantly from baseline, we performed

a bootstrap test. For each electrode, we used the 1000 bootstraps for each stimulus and for the

baseline period and did a one-sided test of how many times the difference (bootstrapped stimulus

minus baseline response) was larger than zero. We report a significant response for p<0.05.

Model
Image preprocessing
Images of 800 � 800 pixels were downsampled to 240 � 240 pixels for computational purposes and

converted into a contrast image: all pixel values between 0 and 254 were rescaled to a range from

zero to one and the background luminance was subtracted (0.5), resulting in all pixel values in a

range from �0.5 to 0.5 with the background corresponding to zero. Images were zero padded with

15 pixels on each side to reduce edge effects, resulting in images of size 270 � 270.

Oriented contrast energy (step 1)
After preprocessing, the images were filtered with isotropic Gabor filters with eight different orienta-

tions and two quadrature phases covering positions on a grid of 135 � 135. Since the stimuli were

band-pass, filters had one spatial scale with a peak spatial frequency of 3 cycles per degree. The fil-

ters were scaled such that the response to a full-contrast optimal grating was 1. After quadrature-

phase filtering, the outputs were squared, summed, and square-rooted and the results can be

expressed as oriented contrast energy (Figure 4A):

oriented contast energypos;or ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ph

X

stimulus � filterpos; or; ph
� �2

s

With pos the 135 � 135 positions in the image, or the eight orientations, ph the 2 phases of the

Gabor filter, and stimulus is the preprocessed image and filterpos, or, ph the oriented Gabor filter with

a particular position, orientation and phase.

Spatial summation (step 2)
For each orientation, the oriented contrast energy is then summed across space (for each orienta-

tion) using isotropic 2D Gaussian weights (Figure 4B):

wi¼ x0;y0ð Þ ¼
1

2ps2
e
� x0�xð Þ2þ y0�yð Þ2

2s2

where wi=(x’,y’) is the weight at position i indexed by coordinates x’ and y’; x and y indicate the center

of the Gaussian; and s indicates the standard deviation of the Gaussian. Note that because of the

scaling term, the sum of the weights equals one:

i

X

wi ¼ 1

The first two steps result in eight values (one per orientation) for the oriented contrast energy

summed within the pRF defined by the Gaussian.

Variance (step 3)
A value for the summed oriented contrast energy will be high if an orientation has a high contrast in

the area described by the 2D Gaussian and small in case an orientation has low contrast in the area

described by the Gaussian. The variance is then calculated across these eight summed oriented con-

trast energy values, exponentiated with an exponent and multiplied by a gain (Figure 4C):
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response¼ g � 1

8

X

8

k¼1

xk ��xð Þ2
 !n

With xk the summed contrast energy or orientation k of which there are a total of 8, n an expo-

nent, g the gain and �x the mean summed contrast energy. When one orientation is present and

others are not (e.g. [1 0 0 0 0 0 0 0]), the variance will be high. When several orientations are present

to different degrees (e.g. [.4 .5 .4 .5 .4 .5 .4 .5]), the variance will be low (Figure 5). The image con-

trast and the number of orientations drive the response of the OV model, and the model has five

parameters: x, y, s, g and n.

Model fitting
The SOC model was fit to the broadband data and the OV model was fit to narrowband gamma

data using leave one out cross validation.

Fitting broadband power changes with the SOC model
The SOC model (Figure 4D–G) was previously developed to explain fMRI signal changes for many

of the images that were used here (Kay et al., 2013b). To explain ECoG broadband changes with

this model, we used a very similar fitting approach.

We fit the SOC model to ECoG broadband response amplitudes from each electrode. Model fit-

ting was performed using nonlinear optimization (MATLAB Optimization Toolbox) with the objective

of minimizing squared error. To guard against local minima, we used a variety of initial seeds for the

c and n parameters. For every combination of c and n, where c is chosen from {.1 .4 .7 .8 .9 .95 1}

and n is chosen from {.1 .3 .5 .7 .9 1}, we optimized x, y, s, and g with c and n fixed, and then opti-

mized all of these parameters simultaneously. To optimally fit the pRF location, we first seed the pRF

in the center of the stimulus and estimated the model parameters from the SPACE stimuli, and then

use the estimated x, y and s to fit the model again on all stimuli. To get an unbiased estimate of the

model accuracy we fit the model using leave one out cross-validation.

Fitting narrowband power changes with the new OV model
The OV model has five parameters that need to be estimated: the x, y, and s of the Gaussian that

define the location and size of the population receptive field, an exponent n and a multiplicative

gain g. The OV model was fit to the ECoG narrowband gamma power changes. The x and y position

of the pRF were derived from the SOC model fit to the broadband data from the same electrode.

There is a consistent relationship between the eccentricity of the pRF in V1, V2 and V3 and its size

(Kay et al., 2013a), and we used this relationship to calculate the size s of the pRF. The only param-

eters that are left to be estimated through fitting are the gain g and the exponent n. We tested an

exponent of {.1 .2 .3 .4 .5 .6 .7 .8 .9 1} and derived the gain through a linear regression with least

squares between the model output and all data except one stimulus. Model performance was then

tested on the left out stimuli (leave one out cross-validation).

Model accuracy
The model performance was evaluated on the data for the left out stimulus (leave one out cross-vali-

dation). As a measure for model performance we calculated the coefficient of determination (COD):

R2 ¼ 100 � 1� SSresiduals

SSdata

� �

SSresiduals ¼
i

X

yi � fið Þ2

SSdata ¼
i

X

yið Þ2

where yi is the measured response amplitude and fi is the predicted response amplitude for stimulus

i. Note that R2 is defined here with respect to zero, rather than with respect to the mean response
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(similar as in Kay et al., 2013b). This metric of prediction accuracy accounts for both accuracy of the

mean and the variance across conditions. A model that predicted only the mean (i.e. uses the mean

of all other responses as a prediction for the left-out response) would have, averaged across electro-

des, a 26% accuracy for gamma oscillations, much lower than the 75% accuracy of the OV model,

and 41% for the broadband response, much lower than the 80% accuracy of the SOC model.

Natural image simulations
We calculated the predictions of the SOC and OV models for a set of natural images. We used a

large collection of 771 natural photographs from the McGill Colour Image Database (Olmos and

Kingdom, 2004). These images were converted to grayscale luminance values using supplied cali-

bration information, cropped to square, and downsampled to 240 � 240 pixels. The images were

then further processed and filtered in the exact same way as the stimuli used in the main experi-

ment. Simulated outputs from the SOC and OV models were calculated using the SOC and OV

parameters for every electrode. This resulted in 771 simulated SOC and OV responses for each of

the 15 electrodes.
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