
NeuroImage 180 (2018) 101–109
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Principles for models of neural information processing

Kendrick N. Kay

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Twin Cities, Minneapolis, MN, USA
A B S T R A C T

The goal of cognitive neuroscience is to understand how mental operations are performed by the brain. Given the complexity of the brain, this is a challenging
endeavor that requires the development of formal models. Here, I provide a perspective on models of neural information processing in cognitive neuroscience. I define
what these models are, explain why they are useful, and specify criteria for evaluating models. I also highlight the difference between functional and mechanistic
models, and call attention to the value that neuroanatomy has for understanding brain function. Based on the principles I propose, I proceed to evaluate the merit of
recently touted deep neural network models. I contend that these models are promising, but substantial work is necessary (i) to clarify what type of explanation these
models provide, (ii) to determine what specific effects they accurately explain, and (iii) to improve our understanding of how they work.
1. Introduction

There has been a recent surge of excitement in deep neural networks
for neuroscience (Kriegeskorte, 2015; Yamins and DiCarlo, 2016). Major
advances in training deep neural networks were achieved by the artificial
intelligence and computer vision communities, and these networks now
achieve unprecedented performance levels on certain computer vision
tasks such as visual object recognition (Krizhevsky et al., 2012).
Following these developments, neuroscientists studying the visual sys-
tem have shown that responses of units in deep neural networks correlate
strongly with experimentally measured responses in the primate visual
system (e.g., Agrawal et al., 2014; Cadieu et al., 2014; Eickenberg et al.,
2017; Güçlü and van Gerven, 2015a; Khaligh-Razavi and Kriegeskorte,
2014; Kubilius et al., 2016; Yamins et al., 2014). Due to these corre-
spondences as well as similarities in architecture between the artificial
and biological networks, deep neural networks have been touted as
excellent models of biological neural systems.

In this paper, I use the excitement elicited by deep neural networks as
an opportunity to think carefully and critically about models of brain
function. I step back and consider the broad endeavor of developing
models in cognitive neuroscience (Sections 2 and 3) and provide an
assessment of why we should develop such models (Sections 4 and 5). I
then highlight the important distinction between functional and mech-
anistic models (Section 6) and propose specific criteria for evaluating
models (Section 7). I end by using the principles I propose to evaluate the
merit of deep neural network models (Section 8).

While I write this paper as a Comments and Controversies article, I
acknowledge that many of the proposed ideas (e.g. Sections 2–6) may be
introductory and uncontroversial in nature, especially to current
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practitioners of model-based neuroscience. My intention in this article is
to start from first principles and lay out my views clearly and simply, so
that the critical, more controversial content (e.g. Sections 7 and 8) comes
well justified. I hope that the more basic content will also serve as a useful
primer for those interested in understanding modeling or considering
engaging in model-based research. Finally, this paper is not a compre-
hensive review of computational neuroscience, but is rather a personal
perspective stemming from my experience developing models of image
processing in visual cortex. This perspective is rooted in the traditions of
sensory neuroscience, and I hope to spark a dialogue with researchers
who hail from other fields of neuroscience.

2. What is cognitive neuroscience?

Before reasoning about models in cognitive neuroscience, we must
first define these various terms. Gazzaniga, Ivry, and Magnun define
‘cognitive neuroscience’ as

“The question of understanding how the functions of the physical
brain can yield the thoughts and ideas of an intangible mind” (Gaz-
zaniga et al., 2014).

It is widely accepted that “thoughts and ideas of an intangible mind,”
or mental operations more generally, can be viewed as information-
processing operations: for example, the brain represents sensory infor-
mation, stores sensory information, reasons about this information, and
uses information to guide motor behavior. Thus, the brain can be viewed
as an organ that mediates interactions between an organism and its
environment, accepting incoming sensory information and delivering
outgoing motor information.
ust 2017
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At a coarse level, we already know what the general information-
processing operations performed by the brain are. To use an example
from visual neuroscience (DiCarlo and Cox, 2007), we know that one
information-processing operation performed by the brain is to take
complex spatiotemporal patterns of light impinging on the retina and to
use this information to decide what the source of these inputs are (e.g.
what type of object is present in the environment). Or, to use an example
from social neuroscience (Kubota et al., 2012), we know that one
information-processing operation performed by the human brain is to
form shortcuts (or “stereotypes”) about other humans and use this in-
formation to influence future behavior. But without further work, we do
not know the specific details of how the brain performs these operations.
For that, we must carefully measure the components of the brain and
identify how specific neurons and neural populations perform informa-
tion processing.

3. What is a model?

A small but growing number of researchers are using model-based
approaches to tackle questions in cognitive neuroscience (e.g., Brouwer
and Heeger, 2013; Forstmann et al., 2011; Huth et al., 2012; Kay and
Yeatman, 2017; O'Doherty et al., 2007; Santoro et al., 2014; Shadlen and
Newsome, 2001; Sprague and Serences, 2013; and others). I propose a
simple, general definition of ‘model’: a model is a description of a system.
In neuroscience, a model would describe how the nervous system is
physically structured (anatomy) and/or how its activity changes
dynamically over time (physiology). In the specific field of cognitive
neuroscience, a model would describe how the anatomy and physiology
of the nervous system accomplish behaviorally relevant
information-processing tasks. The cognitive neuroscientist asks: for a
given brain region, what stimulus, cognitive, or motor operations are
performed by neurons in that region?1

Given the broadness of the proposed definition, nearly any neuro-
science result could be viewed as providing a model. However, models
vary drastically in how precise and quantitative they are. For example,
models can be qualitative, conceptual, and vague about assumptions
(e.g., a description in an introductory textbook, or a ‘word’ model that
involves poorly defined jargon), or models can be quantitative, mathe-
matical, and explicit about assumptions (e.g., a formal implementation of
a model in computer code). Models can depend on concepts and labels
derived from our own cognitive abilities as human observers (e.g., oracle
models that require manually labeling complex audiovisual stimuli in
order to make predictions (Huth et al., 2012)), or models can provide
explicit specification of how concepts and labels are computed
1 This definition is most closely aligned with ‘encoding’ approaches to
cognitive neuroscience in which the experimenter attempts to predict brain
activity measurements in terms of specific stimulus, cognitive, or motor features
that are present during the experiment. ‘Decoding’ approaches reverse the
directionality, attempting to use brain activity measurements to infer stimulus,
cognitive, or motor features. Although there are important technical differences
between these approaches (Naselaris and Kay, 2015; Naselaris et al., 2011),
these differences are not critical to the issues discussed in this paper.
2 I briefly comment on the distinction between models, theories, and simu-

lations. Compared to a model, a theory is more expansive in scope and typically
more qualitative and less tied to an experimental dataset. For example, one
might have a theory for the functional role of feedback connections in sensory
processing, whereas one might develop a model that quantitatively accounts for
the consequences of feedback connections observed in a particular experiment.
There is also the distinction between a model and a simulation. I roughly define
‘simulation’ as the use of a model to demonstrate an effect. The purpose of a
simulation is not so much to account for a specific set of data, but rather to
demonstrate an interesting phenomenon or one that is generally observed in
experimental data. For example, one might simulate a large number of model
neurons under some realistic parameter settings and demonstrate that a sur-
prising network effect emerges.
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independent of an observer (e.g., a computational implementation of
stimulus category (Kay and Yeatman, 2017)). Models can describe sys-
tems at coarse levels of detail (e.g., overall activity in a brain region) or at
fine levels of detail (e.g., ion channels). As cognitive neuroscientists, we
all attempt to describe how the brain performs information processing,
and so technically we are all 'modelers'. Of course, in practice, when we
use the term 'model', we are typically referring to descriptions that have
been made precise and quantitative, and I adopt this usage for the rest of
this paper.2

4. Models make falsifiable claims

Models perform real scientific work, and are not simply ad hoc ap-
pendages to an experimental study. Rather, models make substantive
falsifiable claims and can progressively improve in sophistication and
detail. Consider the following simple experiment (Fig. 1, left). We ask a
human observer to direct her eyes towards a small dot at the center of a
blank display. The small dot changes color periodically and we instruct
the observer to press a button when the color changes. Meanwhile, we
place a stimulus (e.g. a checkerboard) on the display, and move this
stimulus to a variety of different positions. As we manipulate the stim-
ulus, we record neural activity in the observer's occipital cortex using
some technology (e.g. fMRI). We discover that there is an increase in
activity when the stimulus is present on the display and that there is some
variation in activity levels as a function of stimulus position.

In this example, the system consists of the stimulus, task, observer,
behavior, measurement device, and recorded activity. Our goal, as
cognitive neuroscientists, is to describe this system and, in particular, to
describe why the increases in neural activity occur. There are many
possible descriptions, or models, that we could propose (Fig. 1, right). For
example, let us consider four potential models:

Model 1 There is visual information on the display (it is not blank). That
is why occipital cortex shows increased neural activity.

Model 2 There is a point-to-point mapping between positions on the
display and positions on cortex (Engel et al., 1997). That is why
neural activity at a given cortical position increases for some
stimulus positions, but not others.

Model 3 Spatial extent is one property of a visual stimulus. For a given
cortical position, this property is represented through a math-
ematical operation that takes the spatial extent of the stimulus
and performs a weighted sum using a Gaussian function to
generate the activity level (Dumoulin and Wandell, 2008).
Thus, neural activity levels are what they are because occipital
cortex performs this operation.

Model 4 Light reflected from the display enters the eye, is refracted by
the lens, and is focused onto the retina. Photoreceptors in the
retina transduce light energy into electrical voltages. These
voltages are communicated by different types of cells to retinal
ganglion cells, which send action potentials to the LGN. In turn,
neurons in the LGN send action potentials to primary visual
cortex. At each stage in this process, sensitivity is local (e.g.,
photoreceptors are sensitive to light from a restricted region of
the visual field, neurons in the LGN receive input from a specific
collection of neighboring retinal ganglion cells, etc.). The net
result of these processing stages can be summarized by any of
the earlier three models.

Although the above models vary widely in sophistication and detail
(and we could go into even further detail with respect to molecular
mechanisms), all of the models describe the system under consideration
and make substantive falsifiable claims. Each model posits certain vari-
ables as causally related to the observed neural activity and implicitly
excludes other variables. The claim is that the visual stimulus matters to
the neural activity, but that for example, the auditory background noise
that happened to be present during the experiment, the motor behavior,



Fig. 1. Models describe systems at various levels of sophistication and detail. A typical cognitive neuroscience experiment consists of a stimulus, task, observer,
behavior, measurement device, and recorded activity (left). A scientist attempts to develop a model of the system, that is, a description of the events that are occurring
in the system (right). Of particular interest is to characterize why specific levels of neural activity are observed. A variety of different models can be proposed, ranging
in sophistication and detail.
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and the internal cognitive state of the observer do not. With additional
experimental measurements, we can test whether the models are indeed
sufficient or whether modifications to the models are necessary. If we
find that variables such as auditory stimulation or cognitive state affect
the observed activity, these variables must be included to achieve a
complete description of the system.

The examples provided above, like many studies in cognitive neuro-
science, characterize neural activity in specific brain regions. This
approach assumes we have already accurately identified the relevant
brain regions in a given observer. However, this is a non-trivial endeavor
that should be performed carefully (Benson et al., 2012; Frost and Goe-
bel, 2012; Glasser et al., 2016; Gordon et al., 2016; Sabuncu et al., 2010;
D. Wang et al., 2015; L. Wang et al., 2015; Weiner and Grill-Spector,
2012). To aid localization, an increasing number of researchers are
developing quantitative models that describe where distinct regions and
networks are located within the brain (Haxby et al., 2011; Huth et al.,
2016; Nelson et al., 2010; Yeo et al., 2011). Interestingly, locations of
regions and networks in human cortex do not appear to be random and
are instead very predictable. Recent research indicates this predictability
may stem from several types of neurobiological substrates. For example,
cortical folding (Benson et al., 2012; Weiner et al., 2018, 2014), white
matter (Saygin et al., 2011; Yeatman et al., 2014), cytoarchitectonics
(Rosenke et al., 2018; Weiner et al., 2016a), and myelination (Glasser
et al., 2016) can all contribute to predicting the locations of functional
regions.

5. Why are models useful?

Developing precise and quantitative descriptions of how the brain
performs information processing takes effort. In my view, models provide
three main benefits: summary, explanation, and prediction. I provide a
general description of these benefits below, and refer the reader to a
concrete example taken from previous work (Fig. 2).

5.1. Summary

Neural measurements are complex and noisy, and there is no limit to
the number of experimental variations that one could investigate. Models
can provide compact summaries of the information processing that a
neural system is performing. Thus, a major benefit of a model is that one
can make inferences on a focused set of parameters that summarize the
data, instead of attempting to interpret a large number of noisy indi-
vidual data points. Parameters derived in this way can then be compared
across brain areas (e.g. Kay et al., 2013b) or subject populations (e.g.
Schwarzkopf et al., 2014).
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5.2. Explanation

Models posit that specific variables relate to neural activity. As such,
models provide explanations of measurements of the brain. For example,
suppose we find that a neuron is highly active when a clip of rock music is
played but is only weakly active when a speech clip is played. Why does
this occur? One model could be that the neuron computes overall sound
intensity, and the reason we observe weak activity for the speech clip is
that it has low sound intensity. Alternatively, there are other candidate
models that might explain the phenomenon (e.g., selectivity for guitar
tones, variations in attentional engagement). With appropriate experi-
mental measurements, we can adjudicate different models and decide
which model is most accurate (Naselaris and Kay, 2015).

5.3. Prediction

There are several different senses in which models provide predictive
power. One sense comes from cross-validation (Hastie et al., 2001), a
procedure that is commonly used in model-based studies. In
cross-validation, the researcher sets aside some testing data, fits the pa-
rameters of a model on the remaining training data, and then assesses
howwell the fitted model predicts the testing data. The testing data could
reflect distinct trials of the same experimental conditions found in the
training data, in which case this demonstrates limited predictive power.
Alternatively, the testing data could reflect completely novel experi-
mental conditions, which demonstrates stronger predictive power.

A different sense in which models provide predictive power is if a
model developed in one study is able to predict the results of a new study
that does not involve exactly the same subjects, stimuli, and task design
used in the first study. For example, it has been shown that a model
developed using simple artificial stimuli and fMRI measurements suc-
cessfully generalizes to complex naturalistic stimuli (Kay et al., 2013a) as
well as data obtained from a different measurement technique (Winawer
et al., 2013). As another example, it has been shown that a model that
describes structural-functional relationships in one group of subjects can
successfully generalize to a new group of subjects (Rosenke et al., 2018;
Weiner et al., 2018, 2016a).

A third and deep sense in which models provide predictive power is if
a model can predict the consequences of physical perturbations to the
brain. If we had accurate and detailed descriptions of how neural systems
coordinate to perform information-processing operations, we should be
able—in principle—to predict, for example, the effects of lesions made in
specific brain areas (Dricot et al., 2008; Gallant et al., 2000), surgical
removal of entire brain areas (Weiner et al., 2016b), the effects of
enhancement (Salzman et al., 1990) or disruption (Parvizi et al., 2012;



Fig. 2. A concrete example of how models provide summary, explanation, and prediction. Figure adapted from Kay et al., 2013a. a, Two potential models of
how spatial extent of visual stimuli relates to neural responses. The nonlinear model starts with a contrast image representing stimulus location, computes a weighted
sum of this contrast image using a 2D Gaussian, and applies a compressive nonlinearity. The linear model is identical except that the compressive nonlinearity is
removed, leaving a linear gain. b, Data and model predictions for a voxel in visual area TO-1. Black bars indicate measured BOLD responses to different stimulus
locations (depicted by small icons). Leave-one-stimulus-out cross-validation was used to fit the models, and thick lines indicate model predictions. An effect of interest
is whether the response to a full stimulus (open dots) is equal to the sum of the responses to two partial stimuli (filled dots). The data support sub-additive summation,
which is captured by the nonlinear model. c, Three functions performed in this modeling example. (1) The nonlinear model summarizes the large set of noisy mea-
surements using just five parameters. (2) The removal of the compressive nonlinearity leads to linear summation, which does not match the data; thus, the compressive
nonlinearity is necessary for, and explains, sub-additive summation. (3) The nonlinear model predicts responses to novel stimuli. For example, the nonlinear model
predicts specific levels of tolerance in responses to objects varying in position and size, and experimental measurements have confirmed this prediction (Kay
et al., 2013a).
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Pascual-Leone and Walsh, 2001; Rangarajan et al., 2014) of neural ac-
tivity, or the effects of psychoactive drugs (Rokem and Silver, 2010).
Note that these are not easy predictions to make, assuming we are careful
to avoid the illusion of predictive power that comes from making “pre-
dictions” after looking at the data. A model conjured to explain effects
that have already been observed generates “postdictions” and should be
treated with skepticism.

6. Functional vs. mechanistic models

It is important to distinguish between functional models and mecha-
nistic models of neural information processing (Albrecht et al., 2002;
Carandini, 2012; Carandini and Heeger, 2011). Functional (or ‘compu-
tational’) models characterize the transformation between input and
output performed by a neuron or population of neurons (Wu et al., 2006),
reminiscent of the concept of functions in mathematics or programming.
Mechanistic (or ‘biophysical’ or ‘circuit’) models characterize the details
of the mechanism by which a neuron or population of neurons carry out
such a transformation (Priebe, 2016). Thus, a functional model attempts
only to match the outputs of a system given the same inputs provided to
the system, whereas a mechanistic model attempts to also use compo-
nents that parallel the actual physical components of the system.

To illustrate, recall Models 1–3 from the previous example. These
models are all stimulus-referred (Heeger et al., 1996; Wandell et al.,
2015) in the sense that they specify how the stimulus relates to activity in
occipital cortex. Thus, the models can be viewed as functional models
that characterize the transformation between input (stimulus) and output
(neural activity). In contrast, Model 4 concerns not only the stimulus, but
also the series of physical events that intervene between the stimulus and
activity in occipital cortex. This model can therefore be viewed as a
mechanistic model that characterizes how the brain carries out the
transformation described by Models 1–3. There may be multiple possible
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mechanistic models that are all consistent with a given functional model.
Functional models can be rigorously established for a system, even if the
underlying mechanisms are not known.

Functional and mechanistic models are complementary to one
another and should be judged on their own merits. The value of func-
tional models is that they emphasize the outcomes and meaning of neural
information processing. The significance of a signal carried by a neuron
or population of neurons ultimately lies in what that signal conveys about
sensory or motor information for the observer. For example, if an or-
ganism encounters a predator, what matters is successful detection of the
predator so that motor behavior can be appropriately guided; how that
detection is accomplished is of secondary importance. Focusing on
mechanisms without addressing sensory or motor significance would
produce an incomplete picture of neural information processing.

These points are directly related to David Marr's well-known levels of
analysis where distinctions are made among computational, algorithmic,
and implementation levels (Marr, 1982). Slightly generalizing the defi-
nition of ‘mechanistic’ to refer to the details of how something is
accomplished, we see the algorithmic level serves as a mechanistic model
for the computational level and the implementational level serves as a
mechanistic model for the algorithmic level. For example, imagine a
situation where an organism is attempting to determine the location of a
predator from auditory inputs. We can describe the system at a compu-
tational level by characterizing the problem that the organism is trying to
solve: given auditory inputs, detect the predator and determine the di-
rection of the predator. We can describe the system at an algorithmic
level by identifying the specific set of auditory and decision-making al-
gorithms that the brain uses to solve the problem. Or we can describe the
system at an implementational level by identifying the specific configu-
rations of neurons and connections that implement those algorithms.
Each level provides details as to how the level above is accomplished.

Many studies in cognitive neuroscience develop functional models
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and ignore anatomical implementation. For example, a researcher might
use fMRI to investigate how patterns of population activity represent a
stimulus, irrespective of details of how this activity is spatially organized
across cortex. Or, a researcher might use electrophysiology to study how
individual neurons respond to experimental conditions, irrespective of
details of cell types or the circuit that a neuron participates in. However,
anatomical mechanisms may hold valuable clues to function (Amunts
and Zilles, 2015; Kennedy et al., 2016). If the brain spends so much
neurobiological energy organizing structure and function across spatial
scales, presumably this orderliness is useful for something. For example,
perhaps the specific way that functional properties are clustered in the
brain enables faster and more efficient readout of information for a
particular task (Grill-Spector and Weiner, 2014).

The path to understanding anatomical implementation will be diffi-
cult. Every measurement technique has limitations on resolution and
coverage, and no single technique provides all of the necessary infor-
mation. Population techniques that aggregate over multiple neurons (e.g.
fMRI) tell us very little about individual neurons. Thus, models of pop-
ulation neural activity are, in a sense, functional models that do not
provide implementational details of how the brain creates the population
activity. Conversely, fine-scale techniques (e.g. electrophysiology) typi-
cally do not sample all types of neurons nor all regions of the brain, and
therefore risk missing neurons or brain regions relevant to the cognitive
phenomenon under investigation. Thus, models developed using such
techniques may lead to incomplete descriptions of neural information
processing. My working view is that all levels of analysis are useful and
should be pursued: we should strive to build accurate functional models
that abstract from implementational details as well as accurate mecha-
nistic models that reveal how function is achieved by the physical com-
ponents of the brain. Hopefully, with sufficiently developed models, we
will one day be able to bridge the vast differences in scales of measure-
ment in neuroscience (Sejnowski et al., 2014).

7. What makes a good model?

Thus far, I have addressed what models of neural information pro-
cessing are, why they are useful, and the distinction between functional
and mechanistic models. Now suppose in our daily work, we come across
a model put forth by a researcher in the field. How should we evaluate
the merit of the model? I propose the use of two criteria, accuracy and
understanding.

7.1. Accuracy

Accuracy refers to how well a given model performs in matching the
system under investigation (for example, see Fig. 2b). It is sometimes
disparagingly remarked that a model is 'just fitting the data'—on the
contrary, quantitatively matching experimental measurements is exactly
what a model ought to do. To assess accuracy, we collect experimental
data at some spatial and temporal scale, perform proper preparation and
binning of those data, and then quantify whether the predictions of a
model match the data. Typically, models have free parameters whose
values are not known a priori and must be set to obtain quantitative
predictions. These parameters are usually tuned to fit experimental data,
and in such cases, it is crucial to control for overfitting. This can be done
by evaluating predictive performance on left-out data (i.e. cross-
validation) or by using techniques that penalize goodness-of-fit based
on number of free parameters (e.g. Akaike Information Criterion).

Beyond quantifying predictive power for a given set of data, we
should also consider the range and diversity of the experimental ma-
nipulations represented by those data. A model should describe how the
brain carries out information processing in a broad range of situations,
not just the specific situations used in one or a few particular studies
(Felsen and Dan, 2005; Kay et al., 2013b). For example, suppose a model
that operates on images is developed for an experiment in which a fixed
image duration is used (e.g. 100 ms). If we obtain new measurements
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using different image durations (e.g. continuous time-varying image se-
quences), does the model still accurately account for the data? As another
example, suppose visual sinusoidal gratings are presented to an observer
and a model is proposed in which the activity of a neuron is calculated as
a weighted sum of the luminance values of the stimulus (Carandini et al.,
2005). This model posits that neural activity reflects a specific visual
attribute and, by implication, does not reflect other visual, cognitive, or
motor attributes. Evidence for the accuracy of the model would be greatly
strengthened if we performed a diverse range of experimental tests—for
example, using naturalistic visual scenes to deliver luminance stimula-
tion (David et al., 2004), manipulating the internal cognitive state of the
observer (McAdams and Reid, 2005), or allowing visual stimulation to
occur simultaneously with motor responses—and still found that the
same model (with exactly the same parameters) accurately predicts
neural activity. By performing stringent tests of a model, we gain confi-
dence in its accuracy.

I comment briefly on the topic of phenomenological models. It is
possible to have a model that accurately matches a set of data, but per-
forms no actual explanatory work. Such models (which can also be
termed ‘purely descriptive models’) may be useful for comparison pur-
poses, but do not provide neuroscientific insight (Albrecht et al., 2002).
For example, suppose we are investigating how neural responses to
stimuli change as a function of the cognitive task that a subject is per-
forming (Kay and Yeatman, 2017). We could propose a model that allows
each task to induce an additive offset to neural responses, and this model
could be fit and evaluated like any other model. However, the model does
not make a substantive claim about the specific property of the tasks that
is responsible for the additive offsets, and therefore has limited neuro-
scientific value. For instance, imagine trying to predict responses for a
novel cognitive task—the model would be incapable of doing so because
it does not provide any insight into the nature of cognitive tasks.

7.2. Understanding

The second criterion for the merit of a model is understanding, which
refers to how well we, as scientists, grasp the relationship between the
components of a given model and the outcomes that the model predicts.
Or, in simpler terms, do we know how the model works? To illustrate,
suppose we observe neural activity is higher in one experimental con-
dition compared to another. A model that describes this system should
indicate what property of the first condition leads to increased neural
activity. If the model successfully conveys what this property is, we will
have understood why the effect occurs. In practice, models can be math-
ematically or algorithmically complex, and it may take effort to deter-
mine which specific model component is responsible for a given effect
(for an example of how this can be done, see Fig. 2).

It is helpful to consider examples where model understanding is poor.
Suppose we wish to characterize the relationship between two contin-
uous variables, x and y. One approach is to characterize y as a weighted
sum of the outputs of nonlinear basis functions defined on x (e.g., the
weighted sum of a large number of Gaussian functions). Another
approach is to simply characterize y as a linear function of x. Now sup-
pose the relationship between x and y is, in fact, linear. Both the complex
nonlinear model and the simple linear model are identical in their
behavior and equally accurate in matching the data. However, the
complex model has less value because it provides less understanding: to
understand the model, we have to expend additional effort analyzing the
tuning properties of the basis functions and the weights associated with
the basis functions.

As another example, suppose we have two code implementations of a
functional model of neural information processing, one set of code being
short, concise, and well-documented, the other set of code being long,
convoluted, and undocumented. Both sets of code behave identically in
their input-output behavior and achieve the same accuracy in matching
experimental data. However, the longer code has less value because it
provides less understanding: to figure out what model is implemented by
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the code, we have to pore through and digest computer code. This
example highlights the importance of clarity in model-based research.
Clarity should ideally exist at all levels: the verbal or conceptual level
(scientific prose), the mathematical level (equations), and for models that
are algorithmically complex, the computational level (code).

What are some practical methods for improving understanding of a
model? One is to simply observe the model's behavior. Observing how a
model behaves across different experimental manipulations is useful,
even if empirical measurements of those manipulations are not available.
For example, a functional model of visual processing could be probed
using a variety of different stimulus manipulations, such as changing the
orientation of a bar, changing the semantic category of an object, etc.
Carefully controlled experimental manipulations help isolate and iden-
tify what effects are explained by a given model (Rust and Movshon,
2005). A second method for improving understanding is to manipulate
the model and examine the effect on the model's behavior (Kay et al.,
2013b; Nishimoto and Gallant, 2011). If we remove a certain model
component or change a certain model parameter, does the model fail to
account for the effect of interest? If the model fails, we have learned that
the identified component or parameter is critical (for an example, see
Fig. 2). If the model still works, we have learned that the identified
component or parameter is not critical, and we could remove it to obtain
a simpler and easier-to-understandmodel. A third method is to model the
model, that is, perform simulations of the model's behavior and attempt
to develop a simpler model that accounts for the observed behavior. For
instance, in the previously described example involving variables x and y,
we could take the complex nonlinear model, perform simulations, and
eventually realize that a simple linear model reproduces the model's
behavior.

7.3. Trade-offs between accuracy and understanding

Ideally, we achieve models that are both highly accurate and well
understood. But what happens when these criteria come into conflict?
For example, how do we choose between a complex model that is ac-
curate but difficult to understand and a simple model that is less accurate
but easier to understand?

I acknowledge that unlike accuracy, understanding is difficult to
quantify, and I do not think there is a general method for weighing ac-
curacy against understanding. My view is that model assessment is a
subjective decision that must be made on a case-by-case basis. Moreover,
it is not clear that there needs to be a single “best” model for a given
neural system. For example, in some situations, a model is simply used as
a tool to summarize a set of experimental data. In these cases, we should
choose a model that is good at summarizing and that can be practically
estimated from the available data, even though this model might not be
the most accurate model available.

I also acknowledge that it is not easy to know when we have achieved
‘sufficient’ understanding. One possibility is that we sufficiently under-
stand a model if we can simulate and perform predictions of the model in
our minds without having to resort to paper or a computer. Admittedly,
this sets the bar very high. It may very well turn out that certain neural
systems are intrinsically complex and require a very large number of
parameters to describe their behavior, and in these situations, it might be
impossible to develop simple models that admit understanding. Whether
or not this is the case is an empirical question.

8. The case of deep neural networks

Now that I have covered principles for assessing models of neural
information processing, I turn to the specific case of deep neural net-
works (DNNs). These networks, inspired by properties of biological vi-
sual systems (Fukushima, 1980; Serre et al., 2007), consist of multiple
layers of processing, where each layer is composed of units that perform
relatively simple linear and nonlinear operations on the outputs of pre-
vious layers. Connections between units are typically designed such that
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a convolution is performed in the linear weighting step (sameweights are
applied at different positions), which parallels the visual system. Pa-
rameters of the networks are typically set using supervised learning
techniques, optimizing performance on specific tasks such as predicting
the object category associated with the visual input (Yamins et al., 2014).
Researchers have demonstrated high levels of correlation between ac-
tivity exhibited by DNN units and measurements of activity in visual
cortex in response to naturalistic objects and scenes (Eickenberg et al.,
2017; Güçlü and van Gerven, 2015b; Khaligh-Razavi and Kriegeskorte,
2014; Yamins et al., 2014).

Do DNNs have merit as models of biological visual systems? The
answer depends on the specific claim that is being made. Suppose the
claim is simply that activity in visual cortex reflects a series of processing
operations that are performed on visual inputs provided to an observer.
This minimal interpretation, that ‘visual cortex is a multi-layer neural
network that processes visual inputs’, is a simplistic qualitative model
that is neither exciting nor objectionable, but nevertheless counts as a
valid model (see Section 3). Presumably, there is a deeper, more sub-
stantive claim that one wants to make regarding DNNs, and the merit of
this claim will depend heavily on how seriously we want to take the
details of the architecture and parameters used in a DNN. Do we wish to
adopt the extreme view that every parameter value in a DNN is critical
and every DNN unit corresponds to a specific neuron or neural popula-
tion in the brain? If not, what is the proposed interpretation?

An important distinction that affects the interpretation of DNNs is
whether they are intended as functional or mechanistic models (see
Section 6). Suppose DNNs are intended only as functional models of how
stimuli (inputs) relate to neural responses (outputs). In this case, there
are a number of open questions regarding the accuracy of DNNs. Thus far,
researchers have examined large-scale datasets involving a diversity of
complex naturalistic stimuli and demonstrated general correspondence
between artificial and biological responses. However, much work in vi-
sual neuroscience has characterized in detail how specific visual areas
represent specific stimulus dimensions, such as contrast (Albrecht et al.,
2002), spatial extent (Kay et al., 2015), curvature (Brincat and Connor,
2004), color (Horwitz and Hass, 2012), and spatial frequency (Lennie
and Movshon, 2005), just to name a few. Do DNNs accurately account for
these effects? Furthermore, we should scrutinize the range and diversity
of the experimental datasets that have been examined thus far. DNNs
provide potential explanations of stimulus-driven activity, but these are
incomplete descriptions of the brain given that visual activity is affected
by non-stimulus factors such as attention (Luck et al., 1997), imagery
(O'Craven and Kanwisher, 2000), and working memory (Harrison and
Tong, 2009).

Suppose instead that DNNs are intended as mechanistic models that
not only characterize stimulus-response transformations, but also the
way in which the brain accomplishes those transformations. If this is the
intention, we again are faced with a number of open questions. What is
the proposed mapping between individual units in a layer of a DNN and
the neurons in a given brain area? Are DNNs attempting to account for
variations in the physical sizes of different visual areas (Dougherty et al.,
2003)? Do layer-to-layer connections in a DNN accurately reflect physical
connections in biological visual systems, e.g., the spatial extent of V1
neurons that project to a V2 neuron (Sincich et al., 2003)? How can we
reconcile DNNs with the existence of bypass routes in corticocortical
connections (Felleman and Van Essen, 1991) which violate a strictly
hierarchical organization? Can DNNs account for the role of different cell
types, the laminar organization of cortex, and the existence of extensive
feedback projections?

In addition to raising questions about accuracy, I also raise questions
about our understanding of DNNs. The computational capabilities of
DNNs depend critically on the specific parameters used in the models
(Coates et al., 2011; Pinto et al., 2009). However, DNNs have many
thousands (or even millions) of free parameters, and so understanding
DNNs is not a trivial task. If we do not take steps to understand DNNs and
treat these models as ‘black boxes’, they provide the benefit of prediction
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but do not provide much benefit with respect to summary and explana-
tion (see Section 5). They do not summarize well because, without
further work aimed towards simplifying the models, there are a large
number of potential parameters contributing to the behavior of the sys-
tem; they do not explain well because, without further work, it is not
clear which specific parts of the models are necessary to explain specific
effects.

Overall, I am not denying that DNNs have merit, but I am highlighting
open questions and limitations that apply to DNNs if we want to take
them seriously as models of neural information processing. Worries and
concerns about the biological accuracy of neural networks are not new
(Crick, 1989), but the recent explosion in size and complexity of neural
networks warrants additional worries about our understanding of these
networks. I believe there is substantial work to be done towards clari-
fying what type of explanation these models are supposed to provide and
determining what specific experimental effects they accurately explain.
We also need to improve our understanding of how these models work.
Fortunately, there are concrete steps we can take towards improving
understanding (as discussed in Section 7). We can observe the models
(e.g., inspect responses to controlled stimuli (Eickenberg et al., 2017)),
we can manipulate the models (e.g., perturb parameters and examine the
consequences (Cichy et al., 2016)), and we can model the models (e.g.,
perform simulated experiments ‘in silico’ and derive simpler models that
achieve the same behavior).

The concerns voiced here have shaped my own research approach
which has produced models that explain specific effects and have com-
ponents that are well understood. In particular, I have developed a multi-
stage model of visual processing (Kay et al., 2013b; Kay and Yeatman,
2017) that shares architectural similarities to DNNs but is much simpler
and is linked to specific effects observed in fMRI measurements. In a
recent Vision Sciences Society talk, a researcher made a valiant effort to
explain how the model works, spelling out the specific parameters and
operations that compose the model (Benson et al., 2017). Ironically, even
though the model is much more tractable than a DNN, an audience
member complained that the model seemed too complicated. Under-
standing how models work may be a challenging endeavor, but we
should applaud such efforts and we should apply the same criterion of
‘understanding’ to DNNs that we might apply to other models. There are
researchers on the outskirts of computational neuroscience and members
of the public far outside neuroscience who are viewing the recent rise of
deep neural networks with a mixture of interest and wonder. One goal of
this paper is to remind ourselves to approach these models with equal
balance of excitement and skepticism.

9. Conclusion

I wrote this perspective at a broad, non-technical level to speak to a
general audience and to remove us from the messy, often confusing,
details of different measurement methods (e.g., fMRI, EEG/MEG, elec-
trophysiology), different data analysis approaches (e.g., multivariate
pattern analysis, representational similarity analysis, voxelwise
modeling, functional connectivity), and jargon (e.g., encoding, decod-
ing). Although technical details matter (Naselaris et al., 2011), the goal of
this paper is to emphasize the larger point that we should use measure-
ments of the brain to build models of how neurons and neural pop-
ulations perform complex information-processing operations. Although
this statement may seem like a platitude, a quick survey of current
cognitive neuroscience research reveals that most work is not directed
towards the development of quantitative models. Models should accu-
rately predict what happens under a broad range of experimental ma-
nipulations, and we should understand these models through clear
description, observation, and manipulation. When we encounter a model
in the literature, consider questions such as: How well does the model
account for the data? How extensive are the experimental manipula-
tions? How clear is the link between the components of the proposed
model and the observed effects? Is the model attempting to provide a
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functional or mechanistic explanation? Is the model clearly described
and reproducible?

It is useful to draw inspiration from other domains of science. In
chemistry, we know if we mix a certain amount of one chemical with
another, we will observe certain outcomes, such as emission of heat. This
is because we have working models of the relevant variables (e.g., mo-
lecular composition of the chemicals) and how these variables interact. In
astronomy, we know if we observe two celestial bodies headed towards
each other, we will observe certain outcomes, such as collision or tra-
jectory deviation. This is because we have workingmodels of the relevant
variables (e.g., mass, velocity, presence of other nearby bodies) and how
these variables interact. In cognitive neuroscience, suppose we devel-
oped models that could predict the behavioral and neural outcomes of an
arbitrary experiment involving stimuli and task instructions. Such
models would predict how fast and accurate an observer will be at the
task, what levels of neural activity will be found in different brain areas,
and how these neural activity levels relate to the sensory, cognitive, and
motor processes involved. Once we achieve such models, we might be
able to claim to know how the brain works.
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