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Abstract
The resting blood oxygen level-dependent (BOLD) signal is synchronized in large-scale brain networks (resting-state networks,
RSNs) defined by interregional temporal correlations (functional connectivity, FC). RSNs are thought to place strong constraints
on task-evoked processing since they largely match the networks observed during task performance. However, this result may
simply reflect the presence of spontaneous activity during both rest and task. Here, we examined the BOLD network structure of
natural vision, as simulated by viewing of movies, using procedures that minimized the contribution of spontaneous activity. We
found that the correlation between resting and movie-evoked FC (ρ = 0.60) was lower than previously reported. Hierarchical
clustering and graph-theory analyses indicated a well-defined network structure during natural vision that differed from the
resting structure, and emphasized functional groupings adaptive for natural vision. The visual network merged with a network
for navigation, scene analysis, and scene memory. Conversely, the dorsal attention network was split and reintegrated into
2 groupings likely related to vision/scene and sound/action processing. Finally, higher order groupings from the clustering
analysis combined internally directed and externally directed RSNs violating the large-scale distinction that governs resting-state
organization. We conclude that the BOLD FC evoked by natural vision is only partly constrained by the resting network structure.
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Introduction
Recent evidence indicates that spontaneous activity in the
brain is not random, as traditionally modeled based on the var-
iability of sensory response to identical stimuli, but is system-
atically organized as spatial patterns of temporally correlated
activity (from neurons to whole brain networks) (Tsodyks et al.
1999; Varela et al. 2001; Fiser et al. 2004; Fox et al. 2005; He et al.
2008; Nir et al. 2008; de Pasquale et al. 2010; Berkes et al. 2011;

Brookes et al. 2011; Florin and Baillet 2015). In fMRI studies, for
example, the spatial topography of interregional temporal cor-
relations (functional connectivity, FC) of the blood oxygen
level-dependent (BOLD) signal at rest, that is, in the absence of
any stimulation or task, is well described by a relatively small
number of spatio-temporal clusters or networks (so-called
resting-state networks, RSNs). Interestingly, the topography of
BOLD RSNs is very similar to the topographies of BOLD task
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activity evoked by different sensory, motor, and cognitive tasks
and the FC measured during those tasks (Biswal et al. 1995;
Smith et al. 2009; Mennes et al. 2013; Cole et al. 2014).

One explanation for this task-rest correspondence is that
task states have been sculpted into the brain by evolution,
development, and experience (Fiser et al. 2004; Albert et al.
2009; Hasson et al. 2009; Lewis et al. 2009; Tambini et al. 2010;
Raichle 2011; Petersen and Sporns 2015). On this view, specific
tasks represent different subsets of the repertoire of states that
the brain explores at rest (Kenet et al. 2003). As a result, the
neural activity that enables adaptive behavior during tasks is
strongly constrained by the activity observed at rest. However,
if similar sources of intrinsic activity are present at rest and
during tasks, similar FC matrices will be observed for both
states even if task-evoked FC is very different than resting FC.
In line with this view, several authors have proposed that rest
states represent a default or idling state from which many dif-
ferent task states can be generated through unknown mecha-
nisms (Betti et al. 2013; Spadone et al. 2015). Therefore, the FC
from adaptive neural activity, that is, activity evoked by a task,
may be largely unrelated to resting FC. The first but not second
view predicts that task and resting BOLD FC will be similar
even if the influence of intrinsic activity during a task is removed.

In this study, we compared the topography of resting-state
patterns of FC to the topography induced by natural vision, as
simulated by viewing a series of short movies. Importantly, this
comparison occurred after isolating the movie-evoked component
free of any ongoing spontaneous or intrinsic activity, insuring that
task-rest correspondences did not simply reflect the presence of
intrinsic activity during both. One approach to removing intrinsic
activity is to average BOLD time series across subjects, on the
assumption that ongoing spontaneous activity in different sub-
jects is not temporally synchronized. However, Henrikkson et al.
reported that the effects of intrinsic activity on representational
dissimilarity matrices were only partly removed by averaging
BOLD time series across subjects (Henriksson et al. 2015). A differ-
ent approach, called intersubject functional correlation (ISFC), was
recently reported (Simony et al. 2016) (see also Mantini et al. 2012).
To compute the FC between regions A and B, the BOLD time series
from region A was averaged over one group of subjects, the BOLD
time series from region B was averaged over a separate group
of subjects, and then the time series for regions A and B was
correlated.

In the first part of this paper, we show that the ISFC procedure
eliminates intrinsic signals more effectively than simple averag-
ing of time series across subjects within a group, but that at large
sample sizes the 2 methods yield very similar results. We then
use the ISFC procedure to show that the correlation between FC
matrices for natural vision and rest is lower than previously
reported. This result indicates that BOLD task-rest correspon-
dences have been overestimated due to the common presence
of intrinsic activity. Finally, by applying hierarchical clustering
and graph-based analyses to the resting and movie-evoked FC
matrices, we show that natural vision induces a modular net-
work organization of the BOLD signal that differs from the
organization at rest.

Methods
Human Connectome Project Data

Seventy participants (28 male, age 22–35, including pairs of identical
twins) were obtained from the Washington University-Minnesota
Consortium Human Connectome Project (WU-Minn HCP Data—900

Subjects + 7T; June 2016) (Van Essen et al. 2012). BOLD signals
were acquired in 2 consecutive days of experiments on a 7T scan-
ner (SC72 gradient coil 70–100mT/m, multiband factor of 5, time
echo = 22ms, time repetition = 1 s, 1.6mm voxel size) installed at
the University of Minnesota (Uǧurbil et al. 2013). On the first day,
participants were scanned while maintaining fixation on a black
screen for 2 scans, each 15min in duration (resting state). Next,
participants were scanned while watching movie clips for 2 scans,
each 15min in duration (movie task). Each movie-watching scan
contained 3 to 4 short movie clips with a repeated short clip for
validation of possible regression models inserted at the end of
each movie session. A 20-s period of fixation on a black screen
was inserted prior to the first movie clip, in between movie clips,
and following the last movie clip. The same procedure was
repeated for the second day. Two of the movie sessions were
composed of short clip compilations of 3 Hollywood movies
with short intermissions, and the other 2 movie sessions were
composed of short clip compilations of 4 independent films with
short intermissions (see Supplementary Fig. S1 for descriptions
of movie clips).

Preprocessing

Spatial image preprocessing initially followed the HCP minimal
preprocessing pipeline, minimizing spatial smoothing and spa-
tial distortion while maximizing alignment across image modal-
ities. The HCP minimal preprocessing pipeline transformed the
data from the original resolution to 2mm resolution into a
91 282 grayordinate space called CIFTI (Glasser et al. 2013). CIFTI
grayordinates comprise cortical gray matter surface vertices (both
left and right hemisphere, 30K vertices each) and subcortical gray
matter voxels (30K voxels). In this study, only cortical gray matter
surface vertices of both hemispheres were used.

The BOLD time series then underwent 4 additional steps. First,
the data were normalized by their mean, transforming each time
series into % BOLD fluctuation, and global signal regression was
conducted. Second, to minimize the effect of subject motion,
BOLD time series were censored and corrected using the DVARS
measure (temporal derivative of RMS variance), which is highly
correlated with frame-wise head-motion displacement (Power
et al. 2012). For each subject, approximately 5% of BOLD frames
were replaced by interpolating the magnitude values of neigh-
boring BOLD time points.

Third, each subject’s BOLD time series of cortical gray mat-
ter surface vertices (both left and right hemisphere, 30K verti-
ces each) were registered into the Gordon–Laumann parcellation
(Gordon et al. 2016), and then averaged across the vertices within
a parcel. This procedure resulted in a mean BOLD time series for
each parcel, reducing 60K time series to 324. The 324 Gordon–
Laumann parcels are grouped into 13 different RSNs (see
Supplementary Fig. S2): Visual (VIS), Retrosplenial Temporal
(RST), Dorsal Attention (DAN), Dorsal Somatomotor (SMd),
Somatomotor Mouth (SMv), Auditory (AUD), Cingulo-Operculum
(CON), Ventral Attention (VAN), Salience (SAL), Cingulo-parietal
(CPN), Fronto-parietal (FPN), Default Mode (DMN), and None.
Therefore, the use of the mean parcel BOLD time series allowed
simple comparisons of the functional topographies between
resting-state BOLD and movie-watching BOLD while increasing the
signal-to-noise ratio of movie-evoked and resting BOLD time series.

The final processing step was temporal filtering of the mean
parcel BOLD time series. Since low-frequency fluctuations
(<0.1 Hz) account for about 90% of the correlation coefficient
between regions, a bandpass filter of 0.008–0.08 Hz was applied
(Cordes et al. 2001). For each movie BOLD time series, the first
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6 s from the beginning of each clip within each movie was elim-
inated to account for hemodynamic lag.

Resting-State Functional Connectivity and Movie
Functional Connectivity

BOLD signal time series obtained from different scans were
concatenated, and a correlation matrix was computed for each
subject by calculating parcel-to-parcel, that is, pairwise, the
temporal correlation (Pearson r) between time series. Pearson
r-values for individual parcel pairs were converted to Fisher
z-transformed values. A group average rs-FC matrix was obtained
by averaging over subjects the individual subject correlation
matrices and then transforming the Fisher z-values into Pearson
r-values (Fig. 1, left).

FC after Temporal Averaging: Movie and Resting State

Temporal averaging time-locked to specific events is used in
neurophysiology to increase signal to noise of stimulus or task-
evoked activity. Previous work has shown that movie observation

leads to highly synchronized signal time series across different
subjects, due presumably to consistent phase resets of ongoing
spontaneous activity induced by events in the movie (Hasson
et al. 2004; Mantini et al. 2012). Therefore, averaging across sub-
jects BOLD time series from a specific parcel prior to computing
FC should lead to suppression of correlations due to intrinsic
activity and subject-specific movie-evoked activity, and should
enhance the correlation due to movie-evoked activity shared
across subjects. We computed parcel-to-parcel FC matrices on
group-averaged BOLD signal time series in the resting state
(rs-avgFC) and during the movie (m-avgFC) (Fig. 1, middle). The
prediction is that movie FC should reflect predominantly movie-
related activity shared across subjects, whereas resting-state FC
should show weak or no correlation because intrinsic activity
should not be synchronized across subjects.

Intersubject Functional Correlation

The effectiveness of temporal averaging in removing effects of
intrinsic activity on FCwas compared with that of a secondmethod,
“ISFC,” which was recently introduced by Simony et al. (2016)

Figure 1. Three methods for computing FC matrices. (Left) rs-FC and movie FC (m-FC) group correlation matrices were generated by averaging individual correlation matrices

that were computed from pairwise, parcel-to-parcel BOLD temporal correlations. (Middle) For both movie and resting-state conditions, the BOLD time series for each parcel

was first temporally averaged across subjects. Then, group m-avgFC and rs-avgFC matrices were calculated from pairwise, parcel-to-parcel BOLD temporal correlations. (Right)

In the ISFC method, subjects were randomly split into 2 groups. Within a group, the BOLD time series for each parcel was first temporally averaged across subjects. Then, a

group FC matrix was computed by correlating, for each pair of parcels, the parcel time series from one group with the parcel time series from the other group. This procedure

was repeated fifty times with different random groupings of subjects, and the resulting FC matrices were averaged to produce the final group m-ISFC and rs-ISFC matrices.
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(see also Mantini et al. 2012). Subjects were evenly and ran-
domly split into 2 groups. For each parcel, the BOLD signal time
series were averaged across the subjects within each group. Then
a parcel-by-parcel pairwise FC matrix was computed between
groups. The computed FC was not symmetric at this point since
the correlation coefficients of paired region A and B were com-
puted as:

ρAB, upper diagonal = correlation between the BOLD (region A,
Group 1) and BOLD (region B, Group 2).

ρBA, lower diagonal = correlation between the BOLD (region A,
Group 2) and BOLD (region B, Group 1).

To keep the conventional unidirectional connectivity character-
istic of FC, symmetricity in ISFC was imposed by averaging
upper-diagonal values and lower diagonal values. By randomly
permuting 50 times the subjects assigned to each group, 50 FC
matrices were obtained. The r-values of the 50 matrices were
converted to Fisher z-transformed values, the 50 matrices were
averaged, and the values of the averaged matrix were converted
from z-values back to r-values (Fig. 1, right). ISFC matrices were
computed for both resting-state and movie-evoked time series.

Statistical Analysis of Time Series Correlations

The statistical significance of each observed correlation was
accessed by a permutation procedure based on surrogate data
(Simony et al. 2016). Phase-randomized surrogate BOLDs time
series of equal mean and autocorrelation to the original signal
were obtained. The phase-randomization was computed by
rotating the phase ϕ(f) by an independent random variable φ(f)
which was uniformly chosen in the range of [0, 2π) (Prichard
and Theiler 1994).

For the orthogonality test, null distributions of both maxi-
mum noise correlation values and minimum noise correlation
values were obtained via repeated generations (1000) of surro-
gate BOLD signals (Resting-state, movie-evoked, and movie-
residual). FWER were controlled by a threshold (R*) at the
q*100th percentile of the null distribution of maximum values.
The thresholds for each conditions are given above in each
case (all for q < 0.005), along with the % significant ROI pairs
out of the 52 326 possible ROI pairs.

For each surrogate resting-state BOLD and movie BOLD, all
FC maps (rs-FC, rs-avgFC, rs-ISFC, m-FC, m-avgFC, and m-ISFC)
were computed, then the maximum noise correlation values
and the minimum noise correlation values for each FC map
were obtained. By repeating the above procedure 5000 times,
null distributions of the maximum noise correlation values and
the minimum noise correlation values were obtained for each
FC map. Family-wise error rate (FWER) was controlled by a
threshold (R*) at the q*100th percentile of the null distribution
of maximum values (q = 0.005). Since separate thresholds were
applied for positive and negative values, the FWER was 0.01,
2-tailed.

Data-Driven FC Network Reorganization

The resting-state (rs-FC) and movie-evoked (m-ISFC) FC matri-
ces generated above were organized in terms of the predefined
RSNs. To analyze the network organization of the resting-state
and movie-evoked state, 3 different unsupervised, data-driven
analyses were conducted.

First, hierarchical clustering methods were implemented.
Resting-state (rs-FC) and movie-evoked (m-ISFC) FC matrices

were converted to dissimilarity matrices by calculating a dis-
similarity index (1 – Pearson’s r for paired parcels). A hierarchi-
cal clustering analysis, applied to each matrix, yielded an FC
dendrogram (Connolly et al. 2012; Cauda et al. 2014; Riedel et al.
2015). The number of clusters (detected communities) were
determined by the Davies–Bouldin index (DBI), which deter-
mines the optimal number of clusters (Davies and Bouldin
1979). FC matrices were then reordered based on the hierarchi-
cal clustering results.

Second, resting-state FC (rs-FC) and movie-evoked FC
(m-ISFC) were reorganized into communities by implementing
the Louvain community detection algorithm (Blondel et al.
2008) from the Brain Connectivity Toolbox (Rubinov and Sporns
2010) for varying threshold edge densities (4–20%). Due to the
randomized initialization procedure, each run of algorithm
resulted variations in detected communities. To account these
variations, 10 000 runs of Louvain algorithms were conducted
for each FC maps. For each parcel, the most frequently assigned
community throughout the entire iterations was chosen. For
the network modularity measurement, the average modularity
across runs of algorithm was used. To evaluate the stability
of communities, Newman’s Q modularity (Newman 2004)
was evaluated based on both newly detected communities
(unsupervised) and predefined RSNs (supervised). The values of
modularity ranges between 0 (community is no better than ran-
dom connection) and 1 (strong community structure) while the
modularity of typical networks with a strong modular structure
ranges from 0.3 to 0.7 (Newman and Girvan 2004). Since movie-
evoked FC (m-ISFC) was an averaged map of 50 different permu-
tations of split subjects, the modularity scores were assessed for
each permutation. Similarly, the modularity scores of resting-
state FC (rs-FC) were assessed from 50 different permutations of
rs-FC generated from 35 randomly chosen subjects. To test for a
difference in mean modularity scores between rs-FC and m-
ISFC, a cluster-based nonparametric test with a P-value of 0.0001
was performed (Maris and Oostenveld 2007) as follows:

1. Collect trials of the 2 experimental conditions (the modular-
ity scores of rs-FC and m-ISFC in all permutations).

2. Draw a combined dataset that had 2 subsets of randomly
assigned modularity scores.

3. Calculate the difference in mean modularity scores between
subsets.

4. Repeat above steps 2 and 3 1 000 000 times to construct a
histogram of the difference in mean modularity scores.

5. Calculate a P-value based on the proportion of random
partitions that resulted in a larger test statistic than the
observed one.

Finally, resting-state FC (rs-FC) and movie-evoked FC (m-ISFC)
were visualized with spring-embedded models that were com-
puted using a 4% threshold edge density. Similarly, communities
defined from hierarchical clustering and Louvain community
detection algorithms were visualized with spring-embedded
models.

Results
Orthogonality of Movie-Evoked and Resting BOLD
Signals

We first checked that group-averaged BOLD signals evoked by
the movie were orthogonal to intrinsic signals, since otherwise
removing one signal would partly remove the other.
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Two different methods were used to test orthogonality. In the
first, we averaged the movie BOLD time series from 35 subjects
(Group 1) to get a stable estimate of the movie-evoked BOLD time
series. We then correlated this Group 1 time series with the
resting-state time series of each subject from a different group of
35 subjects (Group 2). The correlation between the Group 1 (aver-
age) and Group 2 (single subject) time series was on average,
essentially zero with a small standard deviation across Group 2
subjects (correlation coefficient: μ = −6.32e–4 and σ = 0.041). A non-
parametric permutation test with family error wise correction for
the significance of the computed FC (Simony et al. 2016) indicated
no significant ROI pairs (threshold R* = −0.289 and 0.288).

In a second analysis, we again averaged the movie BOLD
time series from 35 subjects (Group 1) to get a stable estimate
of the movie-evoked BOLD time series. For each subject in a dif-
ferent group of 35 subjects (Group 2), we subtracted the Group 1
time series from the movie time series for that Group 2 subject
to yield a residual time series. The residual time series con-
tained subject-specific movie-evoked BOLD signals and intrin-
sic signals, with at most a small contribution from movie-
evoked signals. We then correlated the residual time series for
that Group 2 subject with the Group 1 average movie-evoked
time series. The correlation between the 2 time series was on
average, essentially zero with a small standard deviation across
Group 2 subjects (correlation coefficient: μ = −0.003 and σ =
0.057). A total of 0.31% of significant ROI pairs were found
(threshold R* = −0.282 and 0.282).

The above analyses show that the group movie-evoked
BOLD signal is orthogonal to the resting-state and movie-
residual BOLD signals. We also conducted 2 tests of the orthog-
onality of different resting-state time series. In the first analy-
sis, we correlated the resting BOLD time series across runs
within a subject. The correlation between 2 time series was on
average, essentially zero with a small standard deviation across
subjects (correlation coefficient: μ = −0.001 and σ = 0.060), and
no significant ROI pairs were found (threshold R* = −0.292 and
0.291). In a second analysis, we correlated the resting-state
BOLD time series from different subjects for a given run. Again,
the correlation between the 2 time series was on average,
essentially zero with a small standard deviation across subjects
(correlation coefficient: μ = −4.16e–4 and σ = 0.041). No signifi-
cant ROI pairs were found (threshold R* = −0.217 and 0.221).

The Influence of Intrinsic Activity on Network
Synchronization during Natural Vision

Because the BOLD signal measured during movie viewing includes
both intrinsic fluctuations and movie-evoked fluctuations
(Fox et al. 2006; Becker et al. 2011), pure movie-evoked pat-
terns of interregional signal synchronization can only be iso-
lated after removing the fluctuations due to intrinsic activity.
We tested 2 procedures for accomplishing this.

Figure 2a shows the group resting FC matrix (rs-FC), which
was computed by averaging across subjects the single-subject
FC matrices formed from the correlations between BOLD time
series for all pairs of parcels from the Gordon–Laumann parcel-
lation (see Fig. 1, left panel). The rs-FC matrix shows the char-
acteristic block structure along the diagonal that highlights
different RSNs. A nonparametric test (FWER P = 0.01, 2-tailed)
indicated that 84.7% of ROI pairs in the rs-FC matrix were sig-
nificant. Figure 2d shows the group movie FC matrix (m-FC),
similarly computed by averaging of single-subject FC matrices
computed from the BOLD time series during movie viewing. A
nonparametric test (FWER P = 0.01, 2-tailed) showed that 82.0%

of ROI pairs in the m-FC matrix were significant. The spatial
correlation between the resting and movie FC matrices was
very high, 0.87, replicating the correspondence between task
and rest FC previously reported (Cole et al. 2014). However, this
correspondence may have reflected the common influence of
intrinsic activity. To compute pure movie-evoked FC, we aver-
aged the BOLD time series from different parcels over subjects
before computing the FC between parcels (see Fig. 1, middle
panel). Since fluctuations of intrinsic activity vary in time from
subject to subject, intersubject averaging of BOLD time series
should reduce the magnitude of intrinsic BOLD variation to
near zero, leaving only the components that are time-locked to
events in the movie. The movie-evoked FC after intersubject
averaging (m-avgFC) is shown in Figure 2e. A nonparametric
test (FWER P = 0.01, 2-tailed) showed that 38.2% of ROI pairs in
the m-avgFC matrix were significant. The spatial correlation
between resting and movie-evoked matrices was only 0.63,
much less than the previous correlation (0.87), consistent with
a reduction of the large contribution of intrinsic activity.

To test whether the intersubject averaging procedure
completely removed the effect of intrinsic activity on FC, we
applied the same procedure to the resting-state data. After
intersubject averaging, each parcel’s BOLD time series showed
only small variations around zero, as expected (not shown).
Nevertheless, as shown in Figure 2b, the resulting FC matrix
(rs-avgFC) was almost identical to the original resting FC
matrix, with a spatial correlation of 0.95. Therefore, the influ-
ence of intrinsic activity on the topography of movie-evoked FC
was not fully removed by intersubject averaging of parcel BOLD
time series. This result is consistent with a recent report that
averaging of BOLD time series during natural image viewing is
insufficient to remove intrinsic fluctuations (Henriksson et al.
2015). A nonparametric test (FWER P = 0.01, 2-tailed) showed
that 13.6% of ROI pairs in the rs-avgFC matrix were significant.

ISFC Effectively Removes the Influence of Intrinsic
Activity

We tested a second procedure for removing intrinsic activity
called “ISFC” (see Fig. 1, right panel), which was recently intro-
duced by Simony et al. (2016). Briefly, the method involves the
same assumption as the first method, namely that intrinsic
activities are uncorrelated across subjects. However, intrinsic
activity is removed by correlating the BOLD time series for 2
parcels across 2 groups of subjects rather than within the same
group. First, subjects were randomly split into 2 groups. Then,
the BOLD time series for each parcel was averaged within each
group, similar to the intersubject averaging procedure of the
first method, resulting in a relatively stable estimate of the
movie activity for each parcel. Note, however, that since data
from only half of the subjects were used to compute the aver-
age time series in a group, the parcel time series for the ISFC
method had lower signal-to-noise than the time series com-
puted using the intersubject averaging method. In the final step
of the ISFC method, we computed the FC between 2 parcels by
correlating the averaged time series for the first parcel from
one group with the averaged time series for the other parcel
from the other group. This correlation step was repeated for all
pairs of parcels to derive a complete FC matrix. The same pro-
cedure was then repeated over many iterations using different
assignments of subjects to the 2 groups. A final ISFC matrix
was computed by averaging the matrices generated from each
iteration.
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The FC matrix computed by applying the ISFC procedure to
the resting-state scans (rs-ISFC) is shown in Figure 2c. No struc-
ture is evident, with the correlations tightly grouped around
zero (mean correlation ρ = 3.57e–4, σ = 0.03, max ρ = 0.12, min ρ
= −0.13). A nonparametric test (FWER P = 0.01, 2-tailed) showed
that no ROI pairs in the rs-ISFC matrix were significant.
Moreover, the spatial correlation between the rs-ISFC matrix
and the original resting-state matrix (rs-FC) was only 0.10.
These results indicate that the effects of intrinsic activity on FC
were more fully removed by the ISFC than intersubject averag-
ing procedure.

Finally, we computed movie-evoked FC using the ISFC pro-
cedure (Fig. 2f, m-ISFC), allowing us to determine pure movie-
evoked FC free of any influence from intrinsic activity. The
overall topography of the m-ISFC matrix was very similar to
that of the m-avgFC matrix. A nonparametric test (FWER P =
0.01, 2-tailed) showed that 61.2% of ROI pairs in the m-ISFC
matrix were significant. Correspondingly, the correlation
between the m-ISFC and rs-FC matrices was 0.60, only slightly
less than the correlation (0.63) between the m-avgFC and rs-FC
matrices. Therefore, the ISFC and intersubject averaging meth-
ods produced very similar movie-evoked FC matrices, even
though they produced very different resting FC matrices. The
reasons for this discrepancy are considered in the discussion.

Intersubject Averaging was More Contaminated by
Intrinsic Activity when FC was Computed from Fewer
Subjects

The preceding section demonstrated that the ISFC method more
fully removed the influence of intrinsic activity during movie-
watching than the intersubject averaging method. We next deter-
mined the effectiveness of each method as a function of the
number of subjects used to compute the FC matrices, since as a
practical matter, large datasets may not be routinely available.

Spatial correlations between different FC matrices as a func-
tion of the number of subjects are illustrated in Figure 3 (see
Supplementary Figs S3–S5 for the FC matrices for N = 10, 20,
and 40 subjects). The effectiveness of the ISFC procedure in
removing intrinsic activity is depicted in Figure 3a. Regardless
of sample size, the spatial similarity of the rs-FC and rs-ISFC
matrices was quite low (Fig. 3a, green), indicating that the rs-
ISFC matrix contained no resting network structure. Conversely,
the spatial similarity of the rs-FC and rs-avgFC matrices was
quite high for all sample sizes (Fig. 3a, blue), indicating that rest-
ing network structure was preserved in spite of the averaging of
resting time series across subjects.

Figure 3b compares the similarity of the topography of
intrinsic activity during rest (rs-FC) with the topographies during

Figure 2. FC matrices for rest and natural vision generated by 3 methods. FC matrices for both resting-state BOLD and movie-watching BOLD were computed using the meth-

ods shown in Figure 1. (a) Resting-state FC (rs-FC), (b) resting-state average FC (rs-avgFC), (c) rs-ISFC, (d) movie FC (m-FC), (e) movie average FC (m-avgFC), and (f) m-ISFC.
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movie-watching in which intrinsic activity was left in (m-FC),
was putatively removed by averaging time series over subjects
(m-avgFC), or was putatively removed by computing FC between
subjects (m-ISFC). Regardless of sample size, resting FC was
highly correlated with movie FC when intrinsic activity was
not removed (Fig. 3b, blue). Averaging of time series across
subjects reduced rest-movie correlations (Fig. 3b, green), with
an effect that increased signal-to-noise (movie-evoked activity
to intrinsic activity) ratio at larger sample sizes, as expected.
However, even at the largest sample size, the correlation of
resting and movie FC was lowest with the ISFC procedure
(Fig. 3b, red). The slight increase in the spatial similarity of the
rs-FC and m-ISFC matrices (Fig. 3b, red) with sample size likely
reflected a corresponding increase in the SNR for each parcel
time series, as discussed above. Because this effect appeared to
asymptote by the largest sample size, however, it likely does not
explain the residual difference between the correlations of rs-FC
with m-avgFC versus m-ISFC. Overall, the ISFC procedure was
the most effective at removing intrinsic activity and performed
well at all sample sizes. For large sample sizes, the averaging
and ISFC methods yielded similar results for movie-evoked
FC, but not resting FC.

The spatial similarity of the movie FC matrices computed
using the 3 methods of Figure 1 was evaluated in Figure 3c. The
high spatial correlation values between m-ISFC and m-avgFC
showed that the overall topography of m-ISFC was very similar

to that of m-avgFC, particularly when a sufficient number of
subjects were sampled (Fig. 3c, red). Finally, the reliability of the
ISFC procedure is shown in Figure 3d. The spatial correlation
between m-ISFC from only 10 random subjects and m-ISFC
from all 70 subjects was high (Fig. 3d, red), indicating that the
topography of pure movie-evoked FC was captured with small
samples.

Effect of Number of BOLD MR Frames on the Similarity
of Rest and Movie FC Matrices

Resting and movie FC matrices are more accurately estimated
as more BOLD frames are analyzed (Laumann et al. 2015). We
evaluated how the spatial correlation between rs-FC and movie
FC matrices depended on epoch length (number of BOLD
frames) (Supplementary Fig. S6). For example, we analyzed 5
independent BOLD datasets (both movie and rest), each con-
sisting of 500 BOLD frames, yielding 5 rs-FC, 5 m-FC, 5 m-avgFC,
and 5 m-ISFC matrices. The spatial correlation among the rs-FC
and movie FC matrices was computed for each of the 25 possible
combinations and then averaged. Supplementary Figure S6 shows
the correlation coefficient between resting and movie FC matrices
as a function of the epoch length. For all movie FC matrices, the
correlation with the rest FC matrix increased with epoch length,
consistent with previous work (Laumann et al. 2015).

Figure 3. Spatial correlation of FC matrices as a function of sample size. (a) Correlation of resting-state FC (rs-FC) with resting-state average FC (blue) and resting-state

intersubject FC (green), and correlation of rest and movie intersubject FC (red), with 95% confidence intervals. (b) Correlation of resting-state FC (rs-FC) with movie FC

(m-FC, blue) movie average FC (m-avgFC, green) and movie intersubject FC (m-ISFC, red), with 95% confidence intervals. (c) Correlation of movie FC matrices that were

computed using the 3 methods of Figure 1, with 95% confidence intervals. (d) FC matrices based on all 70 subjects were compared with matrices of the same type

computed from fewer subjects (rs-FC, blue; m-ISFC, red), with 95% confidence intervals.
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Consistency of Reductions in Task-Rest Similarity
Across Movies

The similarity of task-evoked and resting FC matrices was sub-
stantially reduced when the effects of intrinsic activity on
movie FC were eliminated using the ISFC procedure. We next
determined whether this reduction was consistent across the
movies in the HCP dataset, which differed widely in content
(including Hollywood movies, documentaries, commercials,
and independent movies (Supplementary Fig. S1). Consistency
would suggest that the reduction in similarity did not depend
on the details of the cognitive processes engaged by each
movie.

Movie FC matrices (m-FC and m-ISFC) were computed for
each of 12 movies that lasted at least 3min (see Supplementary
Fig. S1). The spatial correlation of each movie matrix with the
resting FC matrix (rs-FC) was then measured (see Supplementary
Table S1). The similarity of individual m-FC matrices to the rest-
ing FC matrices varied over a small range (μ = 0.80, σ = 0.032), as
did the similarity of m-ISFC matrices (μ = 0.48, σ = 0.028). The
lower spatial correlation value of each individual movie matrix to
the resting matrix relative to the original aggregate analysis,
reflected the smaller number of BOLD frames that were analyzed
for each movie (e.g., for the individual m-ISFC matrices the mean
correlation was 0.48 while in the aggregate analysis the correla-
tions was 0.60; see section Effect of Number of BOLD MR Frames
on the Similarity of Rest and Movie FC Matrices). Importantly, all
12 movies showed a substantial reduction in task-rest simi-
larity when intrinsic activity was removed (see bottom row,
Supplementary Table S1). Therefore, the large decreases in
task-rest similarity after the removal of intrinsic activity gen-
eralized over the individual movies within the HCP dataset,
indicating that the reduction did not depend on the detailed
content of the movies.

Different Patterns of Functional Interactions during Rest
and Natural Vision

Since the ISFC procedure effectively removed the influence of
intrinsic activity on FC, we next considered the relationship
between FC during rest and natural vision. The spatial correla-
tion between the m-ISFC and rs-FC matrices was 0.60, lower
than the 0.87 correlation between the m-FC and rs-FC matrices.
Because the influence of intrinsic activity was removed; how-
ever, this residual similarity reflected signals generated from
entirely different sources, that is, intrinsic versus movie-
evoked activity.

During movie-watching (Fig. 2f ) the FC of individual regions,
relative to rest, was selectively increased or decreased with
other regions in the same network, and particularly with other
regions in different networks, resulting in a heterogeneous m-
ISFC matrix. We statistically evaluated these within-network
and between-network FC changes from rest to natural vision by
measuring the mean and variance of the FC of region pairs
within and across the standard resting networks. In Figure 4a
(movie) and Figure 4b (resting), the diagonal and off-diagonal
cells show, respectively, the mean FC of parcel pairs within
each network and between each pair of networks. Figure 4c
indicates the difference in mean FC between movie and rest,
with cells showing a significant difference in mean FC displayed
in color. Statistical significance was determined by t-tests over
the different interregional FC values within a network or across
networks, with a P-value of 0.05 after Bonferroni correction for
multiple comparisons (a total of 78 comparisons, comprising the

diagonal and upper-diagonal cells of the FC matrix and excluding
the “none” category). Figure 4d–f shows the analogous matrices
for the variance of FC, with significance determined by F-tests.

Not counting the cells involving the “none” category, 60.3%
of the cells (47/78) showed significant differences between rest
and movie in mean FC, including both increases (e.g., DAN FC)
and decreases (e.g., DAN-VIS FC) in FC from rest to movie.
Significant mean effects were observed in 33.3% (4/12) of
within-network and 65.2% (43/66) of between-network cells.
Significant differences in variance were more common overall,
occurring in 79.5% (62/78) of cells, and in all cases reflected
increased variance during the movie. Nonsignificant effects
often involved networks that contained relatively small num-
bers of regions (e.g., CPN, SAL). Significant variance effects were
observed in 66.7% (8/12) of within-network cells and 81.8% (54/
66) of between-network cells. Therefore, significant differences
in both mean FC and variance occurred in a higher percentage
of between-network than within-network cells.

A New Set of Networks during Natural Vision

The statistical analysis of the FC matrices for rest and natural
vision indicated that natural vision involved a large-scale reor-
ganization of BOLD resting network structure. This reorgani-
zation could have involved the formation of a new set of
networks that were just as modular as those observed during
rest, or a less modular structure in which most regions broadly
interacted with many other regions. To objectively identify the
BOLD network organizations for intrinsic and movie-evoked FC,
we conducted both hierarchical clustering analyses and graph-
theory analyses of modularity and community structure on the
rs-FC and m-ISFC matrices.

In order to conduct the hierarchical clustering analysis, the
Pearson correlation coefficients within each FC matrix were
transformed to dissimilarity indices (dij = 1 – ρij || ij = pair of par-
celsi and parcelsj). The optimal number of clusters for each FC
matrix (Nclust,rs-FC = 2 and Nclust,m-ISFC = 7) was determined by
the DBI (Davies and Bouldin 1979), as shown in Figure 5a,d. The
ordering of parcels in the rs-FC matrix was rearranged to match
the dendrogram generated by the clustering analysis and is dis-
played in Figure 5b. The color assignments in the dendrogram
were based on the same color assignments as the predefined net-
works from the Gordon–Laumann parcellation (Supplementary
Fig. S1). Figure 5b shows that the color arrangements within the
rs-FC dendrogram were mostly, although not always, homoge-
neous, indicating that the clustering algorithm largely replicated
the apriori network structure. Moreover, the 2 clusters at the top
level of the hierarchy were consistent with previous demonstra-
tions of a large-scale distinction between externally and inter-
nally directed networks (Fox et al. 2005; Golland et al. 2008).
Cluster 1 (Fig. 5c) included most/all parcels belonging to the
RST, CON, FPN, and DMN networks, corresponding to an inter-
nal network grouping, and the second cluster included most/
all parcels belong to the VIS, SMd SMv, AUD, VAN, and DAN net-
works, corresponding to an external network grouping. Figure 5g
left panel shows the topography of the external and internal
clusters.

The ordering of parcels in the m-ISFC matrix was also rear-
ranged in line with the clustering analysis and is displayed in
Figure 5e. Figure 5f shows the composition of 5 of the seven
clusters at the top level of the hierarchy (the other 2 clusters
contained only 1 and 2 parcels, and are not shown). Several
results stand out. The m-ISFC matrix (Fig. 5e) showed a clear
block structure along the main diagonal, reflecting a modular,
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network organization. However, this modular organization
departed from the apriori network structure. Some apriori net-
works were combined largely intact to form new groupings
adaptive for natural vision. Cluster #5 (Fig. 5f) merged a largely
intact visual network with an intact RST network, which is
involved in navigation, scene perception, and scene memory,
along with some parcels from the fronto-parietal network.
However, many apriori networks were split up and distributed
across different clusters (Fig. 5f). For example, the DAN was
split between clusters #3 and #4. Interestingly, the large-scale
division between internal and external networks was not
respected, with clusters including parcels from networks of
both types. For example, the largest cluster in the m-ISFC
matrix, cluster #3, included parcels from both external

networks (e.g., SMd, AUD, DAN) and internal networks (e.g.,
CON, FPN, DMN). Similarly, the DBI for natural vision did not
show a minimum at 2 clusters (Fig. 5d), unlike the index values
for the resting-state (Fig. 5a). The topography of the 5 clusters is
shown in Figure 5g, right. We defer a description of the possible
functions associated with these clusters until further analyses
are presented.

One general conclusion from the clustering analysis is that
during natural vision, regions from the resting networks were
redistributed into a new set of BOLD networks. This redistribu-
tion should have reduced the modularity of the m-ISFC graph
computed using the apriori networks. Figure 6a, left panel con-
firms this prediction, with much lower modularity scores dur-
ing natural vision than rest. However, when modularity was

Figure 4. Statistical analysis of changes in network organization between rest and natural vision. Mean FC of region pairs within and across RSNs was computed for

movie-evoked (m-ISFC, a) and resting-state (rs-FC, b) FC. The mean difference matrix (c, m-ISFC minus rs-FC) is depicted with cells of only significant difference in the

mean of FC (as determined by t-tests with a P-value of 0.05 after Bonferroni correction for multiple comparisons, total 78 comparisons of diagonal and upper-diagonal

values only, excluding the “none” category). Variance of the FC of region pairs within and across the RSNs were computed for both movie-evoked (m-ISFC, d) and

resting-state (rs-FC, e) FCs. The variance difference matrix (f, m-ISFC minus rs-FC) is depicted with cells of only significant difference in the variance of FC (as deter-

mined by F-tests with a P-value of 0.05 after Bonferroni correction for multiple comparisons, total 78 comparisons of diagonal and upper-diagonal values only, exclud-

ing the “none” category).
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computed without assuming a predefined network structure by
using the Louvain algorithm, modularity scores during rest and
natural vision were roughly similar at moderate and low edge
densities (Fig. 6a, right panel). Therefore, natural vision pro-
duced a new network organization that was roughly as modu-
lar as the organization during rest. This is consistent with the
clear network organization shown in the m-ISFC matrix that
was ordered by the dendrogram from the clustering analysis
(Fig. 5d).

As in the clustering analysis, one community for m-ISFC (#1
in Fig. 6c) merged the visual network and the RST network

involved in navigation, scene perception and scene memory
(see Fig. 6b for the topography of each Louvain community).
Similarly, the DAN was again split between 2 communities (i.e.,
the green blocks within clusters #5 and #6 in Figure 6c, right
column).

Visualization of the Network Organization during Rest
and Natural Vision

To illustrate the functional groupings identified by the cluster-
ing and graph analyses and to provide more insight into their

Figure 5. Hierarchical clustering analysis reveals distinctive network organizations for rest and natural vision. (a,d) DBI values as a function of the number of

clusters for rs-FC (a, minimum DBI = 2) and m-ISFC (d, minimum DBI = 7). (b,e) Region labels along the x- and y-axis of the resting-state FC matrix (b) and m-ISFC

matrix (e) were reordered in accordance with the dendrogram from the hierarchical clustering algorithm. The dendrogram was colored according to the prede-

fined network assignments from the Gordon–Laumann (GL) parcellation (Supplementary Fig. S1). (c,f) Percentage distribution of predefined GL RSNs for each

cluster (e.g., C1) defined from the hierarchical clustering algorithm for rs-FC (c) and m-ISFC (f). The number by each bar indicates the total number of parcels

contained in the cluster. Two clusters containing less than 3 parcels are not shown. (g) Clusters for rs-FC (left) and m-ISFC (right) were projected onto the corti-

cal surface.
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functions, resting-state FC (rs-FC) and movie-evoked FC
(m-ISFC) matrices were visualized via spring-embedded models
(Fig. 7). The colors of the nodes in the models in Figure 7a,d
were based on the apriori Gordon–Laumann networks, those in
Figure 7b,e on the communities from the unsupervised Louvain
algorithm, and those in Figure 7c,f on the top-level clusters
from the hierarchical clustering analysis.

Under resting conditions, the spring-embedded model of the
apriori Gordon–Laumann networks (Fig. 7a) was very similar to
the model of the Louvain communities (Fig. 7b), with nodes of
similar colors (i.e., nodes from similar apriori networks or
Louvain communities) grouped together. Therefore, the data-
driven resting network structure from the current study
matched that observed in previous studies. Additionally, the

spring-embedded model of rs-FC showed a similar arrange-
ment to the spring-embedded resting-state model reported in a
previous study (Power et al. 2011). Finally, the top-level group-
ing from the cluster analysis (Fig. 7c) showed a clear separation
that corresponded to the distinction between internally
directed and externally directed networks, again consistent
with previous work (Fox et al. 2005; Golland et al. 2008).

In contrast, under natural vision the apriori Gordon–
Laumann networks (Fig. 7d) did not match the new BOLD net-
work structure, with intermingling of differently colored nodes
to form new functional groupings. These groupings, presum-
ably adaptive for natural vision, are evident in Figure 7e,f,
which display respectively the Louvain communities and the
top-level clusters from the clustering analysis. The visual and

Figure 6. Analysis of community structure and modularity during rest and natural vision. (a) Modularity of rs-FC (blue) and m-ISFC (red) matrices was computed using

the predefined Gordon–Laumann communities (left graph), or without assuming a preexisting community structure by using the Louvain algorithm (right graph).

A cluster-based nonparametric test with a P-value of 0.0001 was performed to test for a difference in mean modularity between rs-FC and m-ISFC. (b) Communities

identified using the Louvain algorithm (C1–C10) for rs-FC (left) and m-ISFC (right) were projected onto the cortical surface. The percentage distribution of predefined

RSNs for the communities identified by the Louvain algorithm for (c) rs-FC and m-ISFC. The number on the right of the each bar indicates the total number of parcels

contained in the community. The number on the left of the each bar indicates the frequency of community assignments from 10 000 iterations of the Louvain

Algorithm. Communities containing fewer than 5 parcels are not shown.
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RST network were merged into a single vision/scene analysis
community (community #1, Fig. 7e; also cluster #5, Fig. 7f), as
noted earlier, which was adjacent to a community (#5, Fig. 7e;
also cluster #4, Fig. 7f) that combined more visually related par-
cels from the DAN and VAN/language parcels (see Fig. 7d). The
DAN/VAN component of this multicommunity grouping might
be involved in controlling attention to the display. The remaining
parcels of the DAN were integrated with many dorsal somato-
motor parcels (Fig. 7d) into Community #6, which was adjacent to
a community (#3, Fig. 7e) containing many parcels from the audi-
tory network (Fig. 7d). This DAN/SMd/AUD grouping could reflect
attention to/interpretation of action as well as sound, perhaps
including dialog. Community #7 (Fig. 7e) was possibly the most
centrally located in the model and primarily contained parcels
from the FPN, along with small contributions from the VAN and
CON. The central location of this “cognitive control” community
was consistent with the critical role of the FPN in task-dependent
processing (Dosenbach et al. 2008; Cole et al. 2013).

Discussion
Natural vision produced substantial modifications in the FC
observed at rest, resulting in a new BOLD network structure
that was roughly as modular as the resting structure. During
natural vision, RSNs were split into components that recom-
bined with components from other RSNs to form new commu-
nities, or remained intact but merged with other RSNs to form
larger communities. As discussed below, the formation of these
communities was consistent with the cognitive demands
imposed by natural vision. Interestingly, these groupings did
not necessarily respect the large-scale internal/external distinc-
tion that governs resting-state structure, indicating a funda-
mental change from the resting structure. All of the above
results were supported by both hierarchical clustering and
graph-based analyses and indicate that the BOLD network
structure evoked by natural vision was only partly constrained
by the resting structure.

Figure 7. Spring-embedded models reveal different network organizations for rest and natural vision. Spring-embedded models were generated for resting-state FC

(rs-FC) and movie-evoked FC (m-ISFC) matrices of 4% edge density. Nodes were colored by the predefined network assignment from the Gordon–Laumann parcella-

tion (a,d), by Louvain community assignment (b,e), and by Hierarchical clustering (c,f). See Figures 5c,f and 6c for the percentage distribution of predefined RSNs for

each cluster and community.
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BOLD Network Organization during Natural Vision
and Rest

Movie viewing changed the network structure observed during
rest to produce new functional groupings in line with the
demands of natural vision. The visual network merged with
the network for navigation, scene perception and scene mem-
ory, along with parcels from the FPN to form a community
adaptive for analyzing the visual content of the movie. The dor-
sal attention network was split into 2 parts that may have
reflected the multimodal/multidimensional nature of the
movie. Parcels from the DAN and VAN, along with some from
the salience and cingulo-parietal networks, were combined
into a single community that was adjacent to the visual/scene
community described above. This larger DAN/VAN/VIS/Scene
grouping may have been involved in controlling attention to
the display. The remaining DAN parcels were integrated with
dorsal somato-motor parcels into a community adjacent to
another community that included large contributions from the
auditory network. The resulting DAN/SMd/AUD grouping may
have been involved in attention to/interpretation of action and
perhaps attention to sound and dialog. Although these assign-
ments of function are speculative, the reorganization of the
dorsal attention network into 2 separate communities/clusters
was evident both in the Louvain community analyses and in
the cluster analysis. Finally, internally- and externally-directed
processes interacted more strongly during natural vision than
rest. The DBI for resting FC showed a minimum at 2 clusters,
and the composition of those clusters matched the internal/
external distinction. In contrast, the smallest local minimum
value of the DBI for natural vision occurred at seven clusters,
and the largest cluster found combined parcels from several
internal and external networks. Similarly, Louvain communi-
ties combined CON parcels with those from the auditory net-
work and dorsal somato-motor network.

The observed changes in BOLD network structure were con-
sistent with prior observations of differences in FC during rest-
ing and task states. Spadone et al. reported increased FC
between visual and dorsal attention regions during an
attention-shifting paradigm (Spadone et al. 2015). Betti et al.
reported with fMRI and MEG a decrease in the correlation
within networks of alpha/beta band limited power (BLP, espe-
cially visual and auditory), and an increase in the correlation
between networks (e.g., visual and language networks) of theta,
beta, and gamma BLP (Betti et al. 2013). Both Spadone et al. and
Betti et al. reported that the overall topographies of FC during
rest and natural vision were very similar, as did a subsequent
fMRI paper by Cole et al. (2014), but their methodologies did not
remove the effects of intrinsic activity during movie viewing
(see below, relation to previous studies).

Implications for the Function of Resting-State Activity

The introduction noted 2 different conceptions of the relation-
ship between intrinsic and task-evoked activity, that is, a task
state is selected from a broad repertoire of resting states or is
independently generated from a default resting state through
unknown mechanisms. The new BOLD network organization
observed during natural vision seems more consistent with the
latter viewpoint, a conclusion similar to that of Betti et al.
(2013). Our results indicate that resting state organization does
not fully constrain the large-scale FC of brain areas that is
adaptive for natural vision. More generally, we suggest that the
brain can change its network structure to meet the demands of

a task even if that structure departs substantially from the rest-
ing structure. The view that network structure can change to
meet the current task demand is in line with previous views
(Miller and Cohen 2001; Heinzle et al. 2012).

Sources of the Residual Shared Structure Between Rest
and Task

Although the spatial correlation between rest and movie, r =
0.60, was smaller than the rest–task correlations previously
reported, it was nonetheless significant. This result is, consis-
tent with recent studies indicating that task activation can be
predicted from resting FC (Cole et al. 2016; Tavor et al. 2016).
Importantly, since the ISFC procedure completely removed the
effects of intrinsic activity from the FC matrix, the shared FC
topography did not reflect a common source of signals, that is,
intrinsic activity, but instead represented a correspondence
between the resting network structure and the evoked struc-
ture observed during natural vision. A focus on this residual
correspondence may allow a better understanding of how
resting-state FC constrains task-evoked signals and FC.

This correspondence may have resulted from several fac-
tors. First, a common structural connectivity matrix promotes
rest–task correspondence (Vincent et al. 2006; Greicius et al.
2009; Hasson et al. 2009; Honey et al. 2009). Bartfeld et al. stud-
ied the variability of FC whole brain patterns in different behav-
ioral conditions (awake, drowsy, anesthesia) in monkeys
(Barttfeld et al. 2015). They reported that the variability of FC
patterns increased with arousal/wakefulness, and that FC pat-
terns under anesthesia were closely related to the structural
connectivity organization. The latter, structurally driven com-
ponent of FC should be common to task and rest.

In addition, experience driven by natural vision may include
some modal or highly frequent FC patterns that through repeti-
tion and Hebbian mechanisms become part of the tonic, resting
FC structure. Consistent with this idea several studies have
reported modifications of resting FC patterns after learning
(Albert et al. 2009; Lewis et al. 2009; Tambini et al. 2010;
Harmelech and Malach 2013). Recent work has also suggested
long-term, experience-dependent influences on FC in visual
cortex. FC between different visual areas is increased in ROIs
that have overlapping receptive fields (Heinzle et al. 2011;
Raemaekers et al. 2014; Wilf et al. 2017) or represent similar
eccentricities (Arcaro et al. 2015). Wilf et al. (2017) additionally
reported that the FC of visual cortex from movie viewing, after
removal of intrinsic activity, was more similar to resting FC
than the FC from iso-eccentricity stimulation, iso-polar stimu-
lation, or predictions based on retinotopic, polar angle or eccen-
tricity distance. Therefore, a component of the residual shared
structure between rest and natural vision likely reflects fre-
quently experienced patterns of interregional, evoked activity.
Conversely, the FC in visual cortex evoked by stimulation can
differ from resting FC, with larger differences for nonnaturalis-
tic stimulation.

Finally, FC on average is greater between nearby brain
regions both during task and rest, an effect that largely reflects
stronger structural and functional interactions between neigh-
boring regions, but may also partly result from method-related
factors such as smoothing.

Relation to Previous Studies

The conclusion that natural vision produced large changes in
the resting network structure does not conflict with the
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previous results of Cole et al., who reported very similar FC
matrices for resting and task conditions, since the latter
authors did not remove the effects of intrinsic activity from
their task FC matrices (Cole et al. 2014). Interestingly, Cole et al.
also reported that regressing the mean task activity from the
BOLD time series only slightly increased the correlation of rest
and task FC matrices from 0.86 to 0.90 (results taken from the
HCP “seven-task” dataset, n = 118). The large effect of removing
intrinsic activity on the movie FC matrix, coupled with the
much smaller effect of removing mean task activity on the task
FC matrix (Cole et al. 2014), suggests that intrinsic fluctuations
are larger in magnitude than task/movie-evoked fluctuations.
On this view, the resting FC matrix matched the nonregressed
task FC matrix in Cole et al. and the movie FC matrix (m-FC) in
the present study because during the task/movie the sum of
the intrinsic modulations and the (very different) task/movie-
evoked modulations was dominated by the same intrinsic
modulations that were present at rest.

The same factor, in conjunction with the insensitivity of
correlation to overall changes in magnitude, explains why the
intersubject averaging and ISFC procedures produced very simi-
lar movie FC matrices but very different resting FC matrices.
Intersubject averaging of intrinsic fluctuations greatly reduced
their magnitude. As a result, the sum of these signals with the
movie-evoked signals was dominated by the latter, producing
similar m-avg and m-ISFC matrices. However, during rest the
intrinsic signals were not summed with signals from a different
source. Therefore, smaller amplitude intrinsic signals were suf-
ficient to produce the same FC matrix as the resting matrix
measured without intersubject averaging. Larger amplitudes of
intrinsic than movie-evoked activity might partly reflect the
fact that the power of the local field potential is on average
greater and more synchronized at rest than during tasks
(Pfurtscheller and Lopes da Silva 1999; Betti et al. 2013).

Group FC Versus Subject-Specific FC

The ISFC procedure (Simony et al. 2016) is a powerful technique
for eliminating the influence of intrinsic activity on the FC mea-
sured during a task. It produces stable estimates of FC, uncon-
taminated by intrinsic activity, over a wide range of sample
sizes. In contrast, the temporal averaging procedure requires a
large sample size to achieve a similar result. It is important to
note, however, that the ISFC procedure as well as temporal
averaging also eliminates task-evoked FC that is specific to an
individual rather than common across a group.

Wilf et al. (2017) have reported a procedure that eliminates
the effects of intrinsic signals on FC while retaining both group
and subject-specific, movie-evoked FC. Their subjects viewed
the same movie twice, allowing within-subject FC to be com-
puted from the correlation between the 2 viewings (see
Henrikksen et al. for a related approach in which representa-
tional dissimilarity matrices were computed within versus
across trials, and Hasson et al. for earlier work on intersubject
synchronization during movie viewing). However, this proce-
dure only preserved group and individual FC patterns that were
invariant over repeated viewings, which could skew the
observed FC. For example, on a second viewing, subjects likely
could better predict the spatio-temporal content of the movie.

Limitations

Because eye movements are not controlled in the natural vision
paradigm each subject may have received different retinal

inputs during the movie, depending on their fixation patterns.
As noted above, subject-specific FC was not assessed by the
ISFC technique. However, the free-viewing paradigm has been
used in many previous fMRI studies of natural vision (Hasson
et al. 2004; Bartels and Zeki 2005; Golland et al. 2008; Huth et al.
2012; Mantini et al. 2012; Betti et al. 2013; Stansbury et al. 2013)
and has consistently shown strong intersubject correlations in
visual cortex as well as many other brain regions (Hasson et al.
2004, 2010). Responses in visual cortex are sufficiently consis-
tent that a reverse inference procedure can be conducted in
which the brain response in a region such as the fusiform gyrus
during individual frames of the movie can be used to predict
the regions’ selectivity (Hasson et al. 2004). In the current
paper, the m-ISFC matrix showed high correlations between
visual regions. Therefore, movie-viewing evokes a consistent
BOLD response across many brain regions, despite the fact that
eye movements are not controlled. In this paper, we studied
the network organization over the entire brain of these consis-
tent responses.

Because the present work was based on the BOLD signal,
our conclusions only apply to low-frequency activity. Although
the relationship between FC networks during task and rest has
been measured at higher frequencies (Betti et al. 2013), intrinsic
signals were not removed from task FC.

m-ISFC reflects an unknown mixture of interregional inter-
actions and independent coactivations. Although Cole et al.
(2014) removed the mean BOLD activation from task time series
through regression, an analogous procedure was not possible
here since the movie did not involve repeated “trials,” that is,
each time segment of the movie was different.

The ISFC procedure eliminates interactions between task-
evoked signals and intrinsic signals, treating these signals as
additive. Some prior studies reporting high task-rest similarity
used procedures that also likely minimized or attenuated inter-
action effects, suggesting that these effects do not explain the
reduction of task-rest similarity when intrinsic activity is
removed. The high correspondence reported by Smith et al.
(2009), for example, was not caused by interactions, since time-
locked activations have no consistent phase relationship with
intrinsic activity. Cole et al. (2014) compared the similarity of
group-averaged task-evoked FC matrices with group-averaged
resting FC matrices rather than calculating task-rest similarity
in individuals. Group-averaging would have minimized interac-
tion effects that differed across subjects. Moreover, the effects
of interactions on the similarity of task-evoked and resting FC
may depend on the detailed nature and consistency of the
interactions across regions, and therefore may be difficult to
predict. However, we acknowledge that interactions between
task-evoked signals and intrinsic activity may well affect task-
rest similarity and consequently the degree to which reduc-
tions are observed when intrinsic activity is removed.

The reduction in movie-rest similarity after the effects of
intrinsic activity were removed was highly robust and consis-
tent across individual movies. One question, however, is
whether similar reductions will be found for other kinds of
tasks. The seven tasks from the Human Connectome dataset
tested by Cole et al. (2014), Emotional, Gambling, Language,
Motor, Relational, Social, and N-back, showed correlation coef-
ficients between rest and task FC matrices that were very simi-
lar to those between rest and m-FC matrices (i.e., matrices in
which the effects of intrinsic activity were not removed), with
only modest variation across the seven tasks (μ = 0.83, σ =
0.037). However, despite the similarity of rest–task correspon-
dences across movies and tasks when intrinsic activity was left
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in, it is still possible that the magnitude of reductions in simi-
larity when intrinsic activity is removed will differ for some
tasks.

Finally, although the relationship between resting and task-
evoked activity has usually been conceptualized in terms of the
correspondence between resting and task networks defined by
interregional correlations or between resting networks and pat-
terns of task coactivation, it also can be conceptualized in
terms of the similarity of the information carried by patterns of
neural activity during task and rest (Fiser et al. 2010).
Numerous studies have shown that multivoxel patterns of local
activity during tasks carry information about specific stimuli,
classes of stimuli, or even task operations (Haxby et al. 2001;
Kamitani and Tong 2005; Haynes and Rees 2006; Kriegeskorte
et al. 2008; Connolly et al. 2012; Guntupalli et al. 2016), and can
be modulated by learning and attention. The current study,
however, did not test whether intrinsic activity influences or
constrains the information carried by task-evoked activity since
activity was averaged over a parcel and was not analyzed using
multivoxel techniques.

Supplementary Material
Supplementary data are available at Cerebral Cortex online.

Funding
This work was supported by the National Institutes of Health
(RO1 MH096482 and NS095741).

Notes
We thank Davis Van Essen, Matt Glasser, and Tim Brown for
providing HCP Minimum Pipeline Preprocessed HCP 7 T fMRI
data, and thank for all people involved in HCP-consortium. In
addition, we thank Joshua Siegel for help with the graph-theory
analyses. Conflict of Interest: None declared.

References
Albert NB, Robertson EM, Miall RC. 2009. The resting human

brain and motor learning. Curr Biol. 19(12):1023–1027.
Arcaro MJ, Honey CJ, Mruczek RE, Kastner S, Hasson U. 2015.

Widespread correlation patterns of fMRI signal across visual
cortex reflect eccentricity organization. Elife. 19:4.

Bartels A, Zeki S. 2005. Brain dynamics during natural viewing
conditions—a new guide for mapping connectivity in vivo.
Neuroimage. 24(2):339–349.

Barttfeld P, Uhrig L, Sitt JD, Sigman M, Jarraya B, Dehaene S.
2015. Signature of consciousness in the dynamics of resting-
state brain activity. Proc Natl Acad Sci USA. 112(3):887–892.

Becker R, Reinacher M, Freyer F, Villringer A, Ritter P. 2011. How
ongoing neuronal oscillations account for evoked fMRI vari-
ability. J Neurosci. 31(30):11016–11027.

Berkes P, Orban G, Lengyel M, Fiser J. 2011. Spontaneous cortical
activity reveals hallmarks of an optimal internal model of
the environment. Science. 331(6013):83–87.

Betti V, DellaPenna S, de Pasquale F, Mantini D, Marzetti L,
Romani GL, Corbetta M. 2013. Natural scenes viewing alters
the dynamics of functional connectivity in the human brain.
Neuron. 79(4):782–797.

Biswal B, Yetkin FZ, Haughton VM, Hyde JS. 1995. Functional
connectivity in the motor cortex of resting human brain
using echo-planar MRI. Magn Reson Med. 34(4):537–541.

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. 2008. Fast
unfolding of communities in large networks. J Stat Mech.
2008:1–12.

Brookes MJ, Woolrich M, Luckhoo H, Price D, Hale JR,
Stephenson MC, Barnes GR, Smith SM, Morris PG. 2011.
Investigating the electrophysiological basis of resting state
networks using magnetoencephalography. Proc Natl Acad
Sci USA. 108(40):16783–16788.

Cauda F, Costa T, Diano M, Sacco K, Duca S, Geminiani G, Torta
DM. 2014. Massive modulation of brain areas after mechani-
cal pain stimulation: a time-resolved FMRI study. Cereb
Cortex. 24(11):2991–3005.

Cole MW, Bassett DS, Power JD, Braver TS, Petersen SE. 2014.
Intrinsic and task-evoked network architectures of the
human brain. Neuron. 83(1):238–251.

Cole MW, Ito T, Bassett DS, Schultz DH. 2016. Activity flow over
resting-state networks shapes cognitive task activations.
Nat Neurosci. 19(12):1718–1726.

Cole MW, Reynolds JR, Power JD, Repovs G, Anticevic A, Braver
TS. 2013. Multi-task connectivity reveals flexible hubs for
adaptive task control. Nat Neurosci. 16(9):1348–1355.

Connolly AC, Guntupalli JS, Gors J, Hanke M, Halchenko YO, Wu
YC, Abdi H, Haxby JV. 2012. The representation of biological
classes in the human brain. J Neurosci. 32(8):2608–2618.

Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA,
Moritz CH, Moritz CH, Quigley MA, Meyerand ME. 2001.
Frequencies contributing to functional connectivity in the
Cereb Cortex. in “resting-state” data. Am J Neuroradiol. 22
(7):1326–1333.

Davies DL, Bouldin DW. 1979. A cluster separation measure.
IEEE Trans Pattern Anal Mach Intell. 1(2):224–227.

de Pasquale F, Della Penna S, Snyder AZ, Lewis C, Mantini D,
Marzetti L, Belardinelli P, Ciancetta L, Pizzella V, Romani GL,
et al. 2010. Temporal dynamics of spontaneous MEG activity
in brain networks. Proc Natl Acad Sci USA. 107(13):
6040–6045.

Dosenbach NU, Fair DA, Cohen AL, Schlaggar BL, Petersen SE.
2008. A dual-networks architecture of top-down control.
Trends Cogn Sci. 12(3):99–105.

Fiser J, Berkes P, Orbán G, Lengyel M. 2010. Statistically optimal
perception and learning:from behavior to neural representa-
tions. Trends Cogn Sci. 14(3):119–130.

Fiser J, Chiu C, Weliky M. 2004. Small modulation of ongoing
cortical dynamics by sensory input during natural vision.
Nature. 431(7009):573–578.

Florin E, Baillet S. 2015. The brain’s resting-state activity is
shaped by synchronized cross-frequency coupling of oscil-
latory neural activity. Neuroimage. 111:26–35.

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC,
Raichle ME. 2005. The human brain is intrinsically organized
into dynamic, anticorrelated functional networks. Proc Natl
Acad Sci USA. 102(27):9673–9678.

Fox MD, Snyder AZ, Zacks JM, Raichle ME. 2006. Coherent spon-
taneous activity accounts for trial-to-trial variability in
human evoked brain responses. Nat Neurosci. 9(1):23–25.

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fisch B,
Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, et al.
2013. The minimal preprocessing pipelines for the Human
Connectome Project. Neuroimage. 80:105–124.

Golland Y, Golland P, Bentin S, Malach R. 2008. Data-driven
clustering reveals a fundamental subdivision of the human
cortex into two global systems. Neuropsychologia. 46(2):
540–553.

A New Modular Brain Organization of the BOLD Signal during Natural Vision Kim et al. | 15

Downloaded from https://academic.oup.com/cercor/article-abstract/doi/10.1093/cercor/bhx175/3958828/A-New-Modular-Brain-Organization-of-the-BOLD
by University of Minnesota - Twin Cities user
on 03 October 2017



Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM,
Petersen SE. 2016. Generation and evaluation of a cortical
area parcellation from resting-state correlations. Cereb
Cortex. 26(1):288–303.

Greicius MD, Supekar K, Menon V, Dougherty RF. 2009. Resting-
state functional connectivity reflects structural connectivity
in the default mode network. Cereb Cortex. 19(1):72–78.

Guntupalli JS, Hanke M, Halchenko YO, Connolly AC, Ramadge
PJ, Haxby JV. 2016. A model of representational spaces in
human cortex. Cereb Cortex. 26(6):2919–2934.

Harmelech T, Malach R. 2013. Neurocognitive biases and the
patterns of spontaneous correlations in the human cortex.
Trends Cogn Sci. 17(12):606–615.

Hasson U, Malach R, Heeger DJ. 2010. Reliability of cortical
activity during natural stimulation. Trends Cogn Sci. 14(1):
40–48.

Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R. 2004.
Intersubject synchronization of cortical activity during natu-
ral vision. Science. 303(5664):1634–1640.

Hasson U, Nusbaum HC, Small SL. 2009. Task-dependent orga-
nization of brain regions active during rest. Proc Natl Acad
Sci USA. 106(26):10841–10846.

Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P.
2001. Distributed and overlapping representations of faces
and objects in ventral temporal cortex. Science. 293(5539):
2425–2430.

Haynes JD, Rees G. 2006. Decoding mental states from brain
activity in humans. Nat Rev Neurosci. 7(7):523–534.

He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME. 2008.
Electrophysiological correlates of the brain’s intrinsic large-
scale functional architecture. Proc Natl Acad Sci USA. 105(41):
16039–16044.

Heinzle J, Kahnt T, Haynes JD. 2011. Topographically specific
functional connectivity between visual field maps in the
human brain. Neuroimage. 56(3):1426–1436.

Heinzle J, Wenzel MA, Haynes JD. 2012. Visuomotor functional
network topology predicts upcoming tasks. J Neurosci. 32(29):
9960–9968.

Henriksson L, Khaligh-Razavi SM, Kay K, Kriegeskorte N. 2015.
Visual representations are dominated by intrinsic fluctua-
tions correlated between areas. Neuroimage. 114:275–286.

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R,
Hagmann P. 2009. Predicting human resting-state functional
connectivity from structural connectivity. Proc Natl Acad Sci
USA. 106(6):2035–2040.

Huth AG, Nishimoto S, Vu AT, Gallant JL. 2012. A continuous
semantic space describes the representation of thousands
of object and action categories across the human brain.
Neuron. 76(6):1210–1224.

Kamitani Y, Tong F. 2005. Decoding the visual and subjective
contents of the human brain. Nat Neurosci. 8(5):679–685.

Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A. 2003.
Spontaneously emerging cortical representations of visual
attributes. Nature. 425(6961):954–956.

Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H,
Tanaka K, Bandettini PA. 2008. Matching categorical object
representations in inferior temporal cortex of man and
monkey. Neuron. 60(6):1126–1141.

Laumann TO, Gordon EM, Adeyemo B, Synder AZ, Joo SJ, Chen
MY, Gilmore AW, McDermott KB, Nelson SM, Dosenbach
NU, et al. 2015. Functional system and areal organization of
a highly sampled individual human brain. Neuron. 87(3):
657–670.

Lewis CM, Baldassarre A, Committeri G, Romani GL, Corbetta M.
2009. Learning sculpts the spontaneous activity of the resting
human brain. Proc Natl Acad Sci USA. 106(41):17558–17563.

Mantini D, Hasson U, Betti V, Perrucci MG, Romani GL, Corbetta
M, Orban GA, Vanduffel W. 2012. Interspecies activity corre-
lations reveal functional correspondence between monkey
and human brain areas. Nat Methods. 9(3):277–282.

Maris E, Oostenveld R. 2007. Nonparametric statistical testing
of EEG- and MEG-data. J Neurosci Methods. 164(1):177–190.

Mennes M, Kelly C, Colcombe S, Castellanos FX, Milham MP.
2013. The extrinsic and intrinsic functional architectures of
the human brain are not equivalent. Cereb Cortex. 23(1):
223–229.

Miller EK, Cohen JD. 2001. An integrative theory of prefrontal
cortex function. Annu Rev Neurosci. 24:167–202.

Newman ME. 2004. Fast algorithm for detecting community
structure in networks. Phys Rev E Stat Nonlin Soft Matter
Phys. 69(6 Pt 2):066133.

Newman ME, Girvan M. 2004. Finding and evaluating commu-
nity structure in networks. Phys Rev E Stat Nonlin Soft
Matter Phys. 69(2 Pt 2):026113.

Nir Y, Mukamel R, Dinstein I, Privman E, Harel M, Fisch L,
Gelbard-Sagiv H, Kipervasser S, Andelman F, Neufeld MY,
et al. 2008. Interhemispheric correlations of slow spontane-
ous neuronal fluctuations revealed in human sensory cor-
tex. Nat Neurosci. 11(9):1100–1108.

Petersen SE, Sporns O. 2015. Brain networks and cognitive
architectures. Neuron. 88(1):207–219.

Pfurtscheller G, Lopes da Silva FH. 1999. Event-related EEG/MEG
synchronization and desynchronization:Basic principles.
Clin Neurophysiol. 110(11):1842–1857.

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE.
2012. Spurious but systematic correlations in functional
connectivity MRI networks arise from subject motion.
NeuroImage. 59(3):2142–2154.

Power JD, Cohen AL, Nelson SM, Wig GS, Barnes KA, Church JA,
Vogel AC, Laumann TO, Miezin FM, Schlaggar BL, et al. 2011.
Functional network organization of the human brain.
Neuron. 72(4):665–678.

Prichard D, Theiler J. 1994. Generating surrogate data for time
series with several simultaneously measured variables.
Phys Rev Lett. 73(7):951–954.

Raemaekers M, Schellekens W, van Wezel RJ, Petridou N, Kristo G,
Ramsey NF. 2014. Patterns of resting state connectivity in
human primary visual cortical areas: a 7T fMRI study.
Neuroimage. 84:911–921.

Raichle ME. 2011. The restless brain. Brain Connect. 1(1):3–12.
Riedel MC, Ray KL, Dick AS, Sutherland MT, Hernandez Z, Fox

PM, Eickhoff SB, Fox PT, Laird AR. 2015. Meta-analytic con-
nectivity and behavioral parcellation of the human cerebel-
lum. Neuroimage. 117:327–342.

Rubinov M, Sporns O. 2010. Complex network measures of
brain connectivity: uses and interpretations. NeuroImage.
52(3):1059–1069.

Simony E, Honey CJ, Chen J, Lositsky O, Yeshurun Y, Wiesel A,
Hasson U. 2016. Dynamical reconfiguration of the default
mode network during narrative comprehension. Nat
Commun. 7:12141.

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE,
Filippini N, Watkins KE, Toro R, Laird AR, et al. 2009.
Correspondence of the brain’s functional architecture dur-
ing activation and rest. Proc Natl Acad Sci USA. 106(31):
13040–13045.

16 | Cerebral Cortex

Downloaded from https://academic.oup.com/cercor/article-abstract/doi/10.1093/cercor/bhx175/3958828/A-New-Modular-Brain-Organization-of-the-BOLD
by University of Minnesota - Twin Cities user
on 03 October 2017



Spadone S, Della Penna S, Sestieri C, Betti V, Tosoni A, Perrucci
MG, Romani GL, Corbetta M. 2015. Dynamic reorganization
of human resting-state networks during visuospatial atten-
tion. Proc Natl Acad Sci USA. 112(26):8112–8117.

StansburyDENaselarisTGallantJL2013Natural scene statistics
account for the representation of scene categories in human
visual cortexNeuron79510251034

Tambini A, Ketz N, Davachi L. 2010. Enhanced brain correla-
tions during rest are related to memory for recent experi-
ences. Neuron. 65(2):280–290.

Tavor I, Parker Jones O, Mars RB, Smith SM, Behrens TE, Jbabdi S.
2016. Task-free MRI predicts individual differences in brain
activity during task performance. Science. 352(6282):216–220.

Tsodyks M, Kenet T, Grinvald A, Arieli A. 1999. Linking sponta-
neous activity of single cortical neurons and the underlying
functional architecture. Science. 286(5446):1943–1946.
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