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What are deep neural networks (DNNs)?

How should we evaluate DNNs?
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Context for DNNs

* Observation: visual areas show stimulus selectivity
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Context for DNNs

* Observation: visual areas show stimulus selectivity
» Goal: develop image processing models

(receptive-field model, forward model, encoding model, representational model)

Stimuli Model Responses
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Context for DNNs

* Observation: visual areas show stimulus selectivity
» Goal: develop image processing models

(receptive-field model, forward model, encoding model, representational model)

» Detalls:
— Individual units or similarity matrices
— experimental design, cross-validation, noise analysis
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Brief overview of DNNs

More information:

. HiStOI'yZ — Yamins and DiCarlo, Nat Neurosci, 2016

— Kriegeskorte, Annual Reviews, 2015
— Neural networks

— Improvements in training procedures

* Why exciting?
— Powerful (very good performance on computer vision tasks)
— Possibly a good model of the brain?

Yamins et al., PNAS, 2014

Khaligh-Razavi and Kriegeskorte, PLoS Comp Bio, 2014
Cadieu et al., PLoS Comp Bio, 2014

Agrawal et al., arXiv, 2014
Guclu and van Gerven, J Neurosci, 2015

Kubilius et al., PLoS Comp Bio, 2016
Cichy et al., arXiv, 2016
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Brief overview of DNNs

from Yamins and DiCarlo, Nat Neurosci, 2016

Pixels

Layer 1 Layer 2 Layer 3 Layer 4
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Spatial convolution
over image input

Key concepts:
Operations in linear-nonlinear layer » deep

« convolutional

>LA> E—>© » thousands of parameters

Threshold Pool Normalize » training via backpropagation

Filter
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What makes a good model?

» Accuracy
— Cross-validated predictions of experimental data
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What makes a good model?

» Accuracy
— Cross-validated predictions of experimental data
— Caution: NOT circuits. We are just observing responses.

Inhibition, Spike Threshold, and
Stimulus Selectivity in Primary Visual Cortex

Nicholas J. Priebe! and David Ferster2* Neuron 57, February 28, 2008
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What makes a good model?

» Accuracy
— Cross-validated predictions of experimental data
— Caution: NOT circuits. We are just observing responses.

* Understanding
— "I have a model that perfectly simulates your data.”

or ) ?
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What does it mean to understand?

« TUNING
Do you know how the model behaves?

- PARAMETERS
Do you know what happens if you perturb the parameters?

« ARCHITECTURE
Have you done model surgery to identify important parts?

At a aeeper level:
Can you predict responses In your head?
Can you implement the model from scratch?
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Why do we want to understand?

» Understanding enables simplification
— Smaller, more efficient models

— More insightful comparison across visual areas,
cognitive states, individuals, groups

Changes in computation
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Why do we want to understand?

Understanding enables simplification
— Smaller, more efficient models

— More insightful comparison across visual areas,
cognitive states, individuals, groups

Changes in computation across cognitive states
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Kay et al., Curr Biol, 2015
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How do we understand?

« Observe it

Kay et al., PLoS Comp Bio, 2013
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How do we understand?

* Observe it
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How do we understand?

* Observe it
 Manipulate it

If we change Is there an effect?
Architecture | Parameters ——3» Accuracy | Tuning
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How do we understand?

* Observe it
 Manipulate it

- V1 Divisive Spatial Compressive
Stimulus ==p energy =» | normalization | ™ | summation | ™ nonlinearity =P Response
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How do we understand?

* Observe it
 Manipulate it

Also see Nishimoto and Gallant, J Neurosci, 2011
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How do we understand?

* Observe it
 Manipulate it

* Model it

Data Prediction Nonparametric model

X

—> response
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How do we understand?

* Observe it
 Manipulate it

* Model it

Nonparametric model

response

Linear model

X,y —> response
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Take-home points

PR See also:
* Criteria: . Sunday AM poster (33.4071)
— Accuracy & DNN strength » Sunday 8:30am talk (31.22)

— Understanding < DNN weakness

 \What we can do:
— Observe the model TUNING
— Manipulate the model PARAMETERS, ARCHITECTURE
— Model the model PARSIMONY

* Understand and simplify
— Which filter weights are actually important?
— Do you need all those layers?
— Are your effects just driven by receptive field size?
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Take-home points

_ _ See also:
 Criteria: « Sunday AM poster (33.4071)

— Accuracy & DNN strength » Sunday 8:30am talk (31.22)
— Understanding < DNN weakness

 \What we can do:

— Observe the model TUNING
— Manipulate the model PARAMETERS, ARCHITECTURE

— Model the model PARSIMONY

* Understand and simplify

In praise of shallow networks

Kendrick Kay, CMRR, Univ. of Minnesota
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